Back to index

4.12.30

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Epic Goal

  • Enable the migration from a storage intree driver to a CSI based driver with minimal impact to the end user, applications and cluster
  • These migrations would include, but are not limited to:
    • CSI driver for AWS EBS
    • CSI driver for GCP
    • CSI driver for Azure (file and disk)
    • CSI driver for VMware vSphere

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview  

Much like core OpenShift operators, a standardized flow exists for OLM-managed operators to interact with the cluster in a specific way to leverage AWS STS authorization when using AWS APIs as opposed to insecure static, long-lived credentials. OLM-managed operators can implement integration with the CloudCredentialOperator in well-defined way to support this flow.

Goals:

Enable customers to easily leverage OpenShift's capabilities around AWS STS with layered products, for increased security posture. Enable OLM-managed operators to implement support for this in well-defined pattern.

Requirements:

  • CCO gets a new mode in which it can reconcile STS credential request for OLM-managed operators
  • A standardized flow is leveraged to guide users in discovering and preparing their AWS IAM policies and roles with permissions that are required for OLM-managed operators 
  • A standardized flow is defined in which users can configure OLM-managed operators to leverage AWS STS
  • An example operator is used to demonstrate the end2end functionality
  • Clear instructions and documentation for operator development teams to implement the required interaction with the CloudCredentialOperator to support this flow

Use Cases:

See Operators & STS slide deck.

 

Out of Scope:

  • handling OLM-managed operator updates in which AWS IAM permission requirements might change from one version to another (which requires user awareness and intervention)

 

Background:

The CloudCredentialsOperator already provides a powerful API for OpenShift's cluster core operator to request credentials and acquire them via short-lived tokens. This capability should be expanded to OLM-managed operators, specifically to Red Hat layered products that interact with AWS APIs. The process today is cumbersome to none-existent based on the operator in question and seen as an adoption blocker of OpenShift on AWS.

 

Customer Considerations

This is particularly important for ROSA customers. Customers are expected to be asked to pre-create the required IAM roles outside of OpenShift, which is deemed acceptable.

Documentation Considerations

  • Internal documentation needs to exists to guide Red Hat operator developer teams on the requirements and proposed implementation of integration with CCO and the proposed flow
  • External documentation needs to exist to guide users on:
    • how to become aware that the cluster is in STS mode
    • how to become aware of operators that support STS and the proposed CCO flow
    • how to become aware of the IAM permissions requirements of these operators
    • how to configure an operator in the proposed flow to interact with CCO

Interoperability Considerations

  • this needs to work with ROSA
  • this needs to work with self-managed OCP on AWS

Market Problem

This Section: High-Level description of the Market Problem ie: Executive Summary

  • As a customer of OpenShift layered products, I need to be able to fluidly, reliably and consistently install and use OpenShift layered product Kubernetes Operators into my ROSA STS clusters, while keeping a STS workflow throughout.
  •  
  • As a customer of OpenShift on the big cloud providers, overall I expect OpenShift as a platform to function equally well with tokenized cloud auth as it does with "mint-mode" IAM credentials. I expect the same from the Kubernetes Operators under the Red Hat brand (that need to reach cloud APIs) in that tokenized workflows are equally integrated and workable as with "mint-mode" IAM credentials.
  •  
  • As the managed services, including Hypershift teams, offering a downstream opinionated, supported and managed lifecycle of OpenShift (in the forms of ROSA, ARO, OSD on GCP, Hypershift, etc), the OpenShift platform should have as close as possible, native integration with core platform operators when clusters use tokenized cloud auth, driving the use of layered products.
  • .
  • As the Hypershift team, where the only credential mode for clusters/customers is STS (on AWS) , the Red Hat branded Operators that must reach the AWS API, should be enabled to work with STS credentials in a consistent, and automated fashion that allows customer to use those operators as easily as possible, driving the use of layered products.

Why it Matters

  • Adding consistent, automated layered product integrations to OpenShift would provide great added value to OpenShift as a platform, and its downstream offerings in Managed Cloud Services and related offerings.
  • Enabling Kuberenetes Operators (at first, Red Hat ones) on OpenShift for the "big3" cloud providers is a key differentiation and security requirement that our customers have been and continue to demand.
  • HyperShift is an STS-only architecture, which means that if our layered offerings via Operators cannot easily work with STS, then it would be blocking us from our broad product adoption goals.

Illustrative User Stories or Scenarios

  1. Main success scenario - high-level user story
    1. customer creates a ROSA STS or Hypershift cluster (AWS)
    2. customer wants basic (table-stakes) features such as AWS EFS or RHODS or Logging
    3. customer sees necessary tasks for preparing for the operator in OperatorHub from their cluster
    4. customer prepares AWS IAM/STS roles/policies in anticipation of the Operator they want, using what they get from OperatorHub
    5. customer's provides a very minimal set of parameters (AWS ARN of role(s) with policy) to the Operator's OperatorHub page
    6. The cluster can automatically setup the Operator, using the provided tokenized credentials and the Operator functions as expected
    7. Cluster and Operator upgrades are taken into account and automated
    8. The above steps 1-7 should apply similarly for Google Cloud and Microsoft Azure Cloud, with their respective token-based workload identity systems.
  2. Alternate flow/scenarios - high-level user stories
    1. The same as above, but the ROSA CLI would assist with AWS role/policy management
    2. The same as above, but the oc CLI would assist with cloud role/policy management (per respective cloud provider for the cluster)
  3. ...

Expected Outcomes

This Section: Articulates and defines the value proposition from a users point of view

  • See SDE-1868 as an example of what is needed, including design proposed, for current-day ROSA STS and by extension Hypershift.
  • Further research is required to accomodate the AWS STS equivalent systems of GCP and Azure
  • Order of priority at this time is
    • 1. AWS STS for ROSA and ROSA via HyperShift
    • 2. Microsoft Azure for ARO
    • 3. Google Cloud for OpenShift Dedicated on GCP

Effect

This Section: Effect is the expected outcome within the market. There are two dimensions of outcomes; growth or retention. This represents part of the “why” statement for a feature.

  • Growth is the acquisition of net new usage of the platform. This can be new workloads not previously able to be supported, new markets not previously considered, or new end users not previously served.
  • Retention is maintaining and expanding existing use of the platform. This can be more effective use of tools, competitive pressures, and ease of use improvements.
  • Both of growth and retention are the effect of this effort.
    • Customers have strict requirements around using only token-based cloud credential systems for workloads in their cloud accounts, which include OpenShift clusters in all forms.
      • We gain new customers from both those that have waited for token-based auth/auth from OpenShift and from those that are new to OpenShift, with strict requirements around cloud account access
      • We retain customers that are going thru both cloud-native and hybrid-cloud journeys that all inevitably see security requirements driving them towards token-based auth/auth.
      •  

References

As an engineer I want the capability to implement CI test cases that run at different intervals, be it daily, weekly so as to ensure downstream operators that are dependent on certain capabilities are not negatively impacted if changes in systems CCO interacts with change behavior.

Acceptance Criteria:

Create a stubbed out e2e test path in CCO and matching e2e calling code in release such that there exists a path to tests that verify working in an AWS STS workflow.

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Feature Overview

Telecommunications providers continue to deploy OpenShift at the Far Edge. The acceleration of this adoption and the nature of existing Telecommunication infrastructure and processes drive the need to improve OpenShift provisioning speed at the Far Edge site and the simplicity of preparation and deployment of Far Edge clusters, at scale.

Goals

  • Simplicity The folks preparing and installing OpenShift clusters (typically SNO) at the Far Edge range in technical expertise from technician to barista. The preparation and installation phases need to be reduced to a human-readable script that can be utilized by a variety of non-technical operators. There should be as few steps as possible in both the preparation and installation phases.
  • Minimize Deployment Time A telecommunications provider technician or brick-and-mortar employee who is installing an OpenShift cluster, at the Far Edge site, needs to be able to do it quickly. The technician has to wait for the node to become in-service (CaaS and CNF provisioned and running) before they can move on to installing another cluster at a different site. The brick-and-mortar employee has other job functions to fulfill and can't stare at the server for 2 hours. The install time at the far edge site should be in the order of minutes, ideally less than 20m.
  • Utilize Telco Facilities Telecommunication providers have existing Service Depots where they currently prepare SW/HW prior to shipping servers to Far Edge sites. They have asked RH to provide a simple method to pre-install OCP onto servers in these facilities. They want to do parallelized batch installation to a set of servers so that they can put these servers into a pool from which any server can be shipped to any site. They also would like to validate and update servers in these pre-installed server pools, as needed.
  • Validation before Shipment Telecommunications Providers incur a large cost if forced to manage software failures at the Far Edge due to the scale and physical disparate nature of the use case. They want to be able to validate the OCP and CNF software before taking the server to the Far Edge site as a last minute sanity check before shipping the platform to the Far Edge site.
  • IPSec Support at Cluster Boot Some far edge deployments occur on an insecure network and for that reason access to the host’s BMC is not allowed, additionally an IPSec tunnel must be established before any traffic leaves the cluster once its at the Far Edge site. It is not possible to enable IPSec on the BMC NIC and therefore even OpenShift has booted the BMC is still not accessible.

Requirements

  • Factory Depot: Install OCP with minimal steps
    • Telecommunications Providers don't want an installation experience, just pick a version and hit enter to install
    • Configuration w/ DU Profile (PTP, SR-IOV, see telco engineering for details) as well as customer-specific addons (Ignition Overrides, MachineConfig, and other operators: ODF, FEC SR-IOV, for example)
    • The installation cannot increase in-service OCP compute budget (don't install anything other that what is needed for DU)
    • Provide ability to validate previously installed OCP nodes
    • Provide ability to update previously installed OCP nodes
    • 100 parallel installations at Service Depot
  • Far Edge: Deploy OCP with minimal steps
    • Provide site specific information via usb/file mount or simple interface
    • Minimize time spent at far edge site by technician/barista/installer
    • Register with desired RHACM Hub cluster for ongoing LCM
  • Minimal ongoing maintenance of solution
    • Some, but not all telco operators, do not want to install and maintain an OCP / ACM cluster at Service Depot
  • The current IPSec solution requires a libreswan container to run on the host so that all N/S OCP traffic is encrypted. With the current IPSec solution this feature would need to support provisioning host-based containers.

 

A list of specific needs or objectives that a Feature must deliver to satisfy the Feature. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts.  If a non MVP requirement slips, it does not shift the feature.

requirement Notes isMvp?
     
     
     

 

Describe Use Cases (if needed)

Telecommunications Service Provider Technicians will be rolling out OCP w/ a vDU configuration to new Far Edge sites, at scale. They will be working from a service depot where they will pre-install/pre-image a set of Far Edge servers to be deployed at a later date. When ready for deployment, a technician will take one of these generic-OCP servers to a Far Edge site, enter the site specific information, wait for confirmation that the vDU is in-service/online, and then move on to deploy another server to a different Far Edge site.

 

Retail employees in brick-and-mortar stores will install SNO servers and it needs to be as simple as possible. The servers will likely be shipped to the retail store, cabled and powered by a retail employee and the site-specific information needs to be provided to the system in the simplest way possible, ideally without any action from the retail employee.

 

Out of Scope

Q: how challenging will it be to support multi-node clusters with this feature?

Background, and strategic fit

< What does the person writing code, testing, documenting need to know? >

Assumptions

< Are there assumptions being made regarding prerequisites and dependencies?>

< Are there assumptions about hardware, software or people resources?>

Customer Considerations

< Are there specific customer environments that need to be considered (such as working with existing h/w and software)?>

< Are there Upgrade considerations that customers need to account for or that the feature should address on behalf of the customer?>

<Does the Feature introduce data that could be gathered and used for Insights purposes?>

Documentation Considerations

< What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)? >

< What does success look like?>

< Does this feature have doc impact?  Possible values are: New Content, Updates to existing content,  Release Note, or No Doc Impact>

< If unsure and no Technical Writer is available, please contact Content Strategy. If yes, complete the following.>

  • <What concepts do customers need to understand to be successful in [action]?>
  • <How do we expect customers will use the feature? For what purpose(s)?>
  • <What reference material might a customer want/need to complete [action]?>
  • <Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available. >
  • <What is the doc impact (New Content, Updates to existing content, or Release Note)?>

Interoperability Considerations

< Which other products and versions in our portfolio does this feature impact?>

< What interoperability test scenarios should be factored by the layered product(s)?>

Questions

Question Outcome
   

 

 

Epic Goal

  • Install SNO within 10 minutes

Why is this important?

  • SNO installation takes around 40+ minutes.
  • This makes SNO less appealing when compared to k3s/microshift.
  • We should analyze the  SNO installation, figure our why it takes so long and come up with ways to optimize it

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

  1. https://docs.google.com/document/d/1ULmKBzfT7MibbTS6Sy3cNtjqDX1o7Q0Rek3tAe1LSGA/edit?usp=sharing

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

This is a clone of issue OCPBUGS-14416. The following is the description of the original issue:

Description of problem:

When installing SNO with bootstrap in place the cluster-policy-controller hangs for 6 minutes waiting for the lease to be acquired. 

Version-Release number of selected component (if applicable):

 

How reproducible:

100%

Steps to Reproduce:

1.Run the PoC using the makefile here https://github.com/eranco74/bootstrap-in-place-poc
2.Observe the cluster-policy-controller logs post reboot

Actual results:

I0530 16:01:18.011988       1 leaderelection.go:352] lock is held by leaderelection.k8s.io/unknown and has not yet expired
I0530 16:01:18.012002       1 leaderelection.go:253] failed to acquire lease kube-system/cluster-policy-controller-lock
I0530 16:07:31.176649       1 leaderelection.go:258] successfully acquired lease kube-system/cluster-policy-controller-lock

Expected results:

Expected the bootstrap cluster-policy-controller to release the lease so that the cluster-policy-controller running post reboot won't have to wait the lease to expire.  

Additional info:

Suggested resolution for bootstrap in place: https://github.com/openshift/installer/pull/7219/files#diff-f12fbadd10845e6dab2999e8a3828ba57176db10240695c62d8d177a077c7161R44-R59

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

We plan to build Ironic Container Images using RHEL9 as base image in OCP 4.12

This is required because the ironic components have abandoned support for CentOS Stream 8 and Python 3.6/3.7 upstream during the most recent development cycle that will produce the stable Zed release, in favor of CentOS Stream 9 and Python 3.8/3.9

More info on RHEL8 to RHEL9 transition in OCP can be found at https://docs.google.com/document/d/1N8KyDY7KmgUYA9EOtDDQolebz0qi3nhT20IOn4D-xS4

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a SRE, I want hypershift operator to expose a metric when hosted control plane is ready. 

This should allow SRE to tune (or silence) alerts occurring while the hosted control plane is spinning up. 

 

 

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The Kube APIServer has a sidecar to output audit logs. We need similar sidecars for other APIServers that run on the control plane side. We also need to pass the same audit log policy that we pass to the KAS to these other API servers.

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Place holder epic to track spontaneous task which does not deserve its own epic.

AWS has a hard limit of 100 OIDC providers globally. 
Currently each HostedCluster created by e2e creates its own OIDC provider, which results in hitting the quota limit frequently and causing the tests to fail as a result.

 
DOD:
Only a single OIDC provider should be created and shared between all e2e HostedClusters. 

Once the HostedCluster and NodePool gets stopped using PausedUntil statement, the awsprivatelink controller will continue reconciling.

 

How to test this:

  • Deploy a private cluster
  • Put it in pause once deployed
  • Delete the AWSEndPointService and the Service from the HCP namespace
  • And wait for a reconciliation, the result it's that they should not be recreated
  • Unpause it and wait for recreation.

AC:

We have connectDirectlyToCloudAPIs flag in konnectiviy socks5 proxy to dial directly to cloud providers without going through konnectivity.

This introduce another path for exception https://github.com/openshift/hypershift/pull/1722

We should consolidate both by keep using connectDirectlyToCloudAPIs until there's a reason to not.

 

DoD:

At the moment if the input etcd kms encryption (key and role) is invalid we fail transparently.

We should check that both key and role are compatible/operational for a given cluster and fail in a condition otherwise

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

Description of problem:

Image registry pods panic while deploying OCP in me-central-1 AWS region

Version-Release number of selected component (if applicable):

4.11.2

How reproducible:

Deploy OCP in AWS me-central-1 region

Steps to Reproduce:

Deploy OCP in AWS me-central-1 region 

Actual results:

panic: Invalid region provided: me-central-1

Expected results:

Image registry pods should come up with no errors

Additional info:

 

This is a clone of issue OCPBUGS-3114. The following is the description of the original issue:

Description of problem:

When running a Hosted Cluster on Hypershift the cluster-networking-operator never progressed to Available despite all the components being up and running

Version-Release number of selected component (if applicable):

quay.io/openshift-release-dev/ocp-release:4.11.11-x86_64 for the hosted clusters
hypershift operator is quay.io/hypershift/hypershift-operator:4.11
4.11.9 management cluster

How reproducible:

Happened once

Steps to Reproduce:

1.
2.
3.

Actual results:

oc get co network reports False availability

Expected results:

oc get co network reports True availability

Additional info:

 

Description of problem:

Pod and PDB list page just report "Not found" when no resources found 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-15-094115

How reproducible:

Always

Steps to Reproduce:

1. normal user has a new empty project
2. normal user visit PDB list page via Workloads ->  PodDisruptionBudgets 
3.

Actual results:

2. it just reports 'Not found'

Expected results:

2. for other workloads, it will report "No <resource> found", for example
No HorizontalPodAutoscalers found
No StatefulSets found
No Deployments found

so for Pods and PodDisruptionBudgets list page, when no resource can be found, it's better that we also reports "No pods found" and "No PodDisruptionBudgets found"

Additional info:

 

Description of problem:

There were 4 ingress-controllers and totally 15 routes. On web console, try to query "route_metrics_controller_routes_per_shard" in Observe >> Metrics page. the stats for 3 ingress-controllers are 15, and it is 1 for the last ingress-controller

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-23-154914

How reproducible:

Create pods, services, ingress-controllers, routes, then check  "route_metrics_controller_routes_per_shard" on web console

Steps to Reproduce:

1. get cluster's base domain
% oc get dnses.config/cluster -oyaml | grep -i domain
  baseDomain: shudi-412gcpop36.qe.gcp.devcluster.openshift.com

2. create 3 clusters
% oc -n openshift-ingress-operator get ingresscontroller
NAME         AGE
default      7h5m
extertest3   120m
internal1    120m
internal2    120m
% 

3. check the spec of the 4 ingress-controllres
a, default

b, extertest3
spec:
  domain: extertest3.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: External
    type: LoadBalancerService
c, internal1
spec:
  domain: internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: Internal
    type: LoadBalancerService
d, internal2
spec:
  domain: internal2.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: Internal
    type: LoadBalancerService
  routeSelector:
    matchLabels:
      shard: alpha

4. check the route, there are 15 routes
% oc get route -A | awk '{print $3}'
HOST/PORT
oauth-openshift.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
downloads-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
canary-openshift-ingress-canary.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
alertmanager-main-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-federate-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
thanos-querier-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
edge1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
int1reen2-test.internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
pass1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
reen1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
service-unsecure-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
int1edge2-test.internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
test.shudi.com
%

% oc get route -A | awk '{print $3}' | grep apps.shudi
oauth-openshift.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
downloads-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
canary-openshift-ingress-canary.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
alertmanager-main-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-federate-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
thanos-querier-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
edge1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
pass1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
reen1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
service-unsecure-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
%

% oc get route -A | awk '{print $3}' | grep apps.shudi | wc -l
      12
% oc get route -A | awk '{print $3}' | grep internal1 | wc -l 
       2
% oc get route -A | awk '{print $3}' | grep shudi.com | wc -l
       1
%

5. only route unsvc5 had the shard=alpha label
 % oc get route unsvc5  -oyaml | grep labels: -A2
  labels:
    name: unsvc5
    shard: alpha
 % oc get route unsvc5 -oyaml | grep spec: -A1
  spec:
    host: test.shudi.com

6. login web console(https://https://console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com/monitoring/query-browser), then navigate to Observe >> Metrics 

7. input"route_metrics_controller_routes_per_shard ", then click the "Run queries" button. As the attached picture showed:
​​name                           value
default                        15
extertest3                     15
internal1                      15      
internal2                      1

8. Also there was a minor issue: As the attached picture showed, there were two name in the header line

Name                                           name      value                              
route_metrics_controller_routes_per_shard     default    15
route_metrics_controller_routes_per_shard     extertest3 15
route_metrics_controller_routes_per_shard     internal1  15
route_metrics_controller_routes_per_shard     internal2  1

Actual results:

​​name                         value 
default                      15
extertest3                   15 
internal1                    15
internal2                    1

Expected results:

​​name                         value
default                      12
extertest3                   0
internal1                    2 
internal2                    1

Additional info:

 

Our Prometheus alerts are inconsistent with both upstream and sometimes our own vendor folder. Let's do a clean update run before the next release is branched off.

This is a clone of issue OCPBUGS-3278. The following is the description of the original issue:

Description of problem:

When doing openshift-install agent create image, one should not need to provide platform specific data like boot MAC addresses.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1.Create install-config with only VIPs in Baremetal platform section

apiVersion: v1
metadata:
  name: foo
baseDomain: test.metalkube.org
networking:
  clusterNetwork:
    - cidr: 10.128.0.0/14
      hostPrefix: 23
  machineNetwork:
    - cidr: 192.168.122.0/23
  networkType: OpenShiftSDN
  serviceNetwork:
    - 172.30.0.0/16
compute:
  - architecture: amd64
    hyperthreading: Enabled
    name: worker
    platform: {}
    replicas: 0
controlPlane:
  name: master
  replicas: 3
  hyperthreading: Enabled
  architecture: amd64
platform:
  baremetal:
    apiVIPs:
      - 192.168.122.10
    ingressVIPs:
      - 192.168.122.11
---
apiVersion: v1beta1
metadata:
  name: foo
rendezvousIP: 192.168.122.14

2.openshift-install agent create image

Actual results:

ERROR failed to write asset (Agent Installer ISO) to disk: cannot generate ISO image due to configuration errors 
ERROR failed to fetch Agent Installer ISO: failed to load asset "Install Config": failed to create install config: invalid "install-config.yaml" file: [platform.baremetal.hosts: Invalid value: []*baremetal.Host(nil): bare metal hosts are missing, platform.baremetal.Hosts: Required value: not enough hosts found (0) to support all the configured ControlPlane replicas (3)]

Expected results:

Image gets generated

Additional info:

We should go into install-config validation code, detect if we are doing agent-based installation and skip the hosts checks

This is a clone of issue OCPBUGS-6663. The following is the description of the original issue:

Description of problem:

When running openshift-install agent create image, and the install-config.yaml does not contain platform baremetal settings (except for VIPs) warnings are still generated as below:
DEBUG         Loading Install Config...            
WARNING Platform.Baremetal.ClusterProvisioningIP: 172.22.0.3 is ignored 
DEBUG Platform.Baremetal.BootstrapProvisioningIP: 172.22.0.2 is ignored 
WARNING Platform.Baremetal.ExternalBridge: baremetal is ignored 
WARNING Platform.Baremetal.ExternalMACAddress: 52:54:00:12:e1:68 is ignored 
WARNING Platform.Baremetal.ProvisioningBridge: provisioning is ignored 
WARNING Platform.Baremetal.ProvisioningMACAddress: 52:54:00:82:91:8d is ignored 
WARNING Platform.Baremetal.ProvisioningNetworkCIDR: 172.22.0.0/24 is ignored 
WARNING Platform.Baremetal.ProvisioningDHCPRange: 172.22.0.10,172.22.0.254 is ignored 
WARNING Capabilities: %!!(MISSING)s(*types.Capabilities=<nil>) is ignored 

It looks like these fields are populated with values from libvirt as shown in .openshift_install_state.json:
            "platform": {
                "baremetal": {
                    "libvirtURI": "qemu:///system",
                    "clusterProvisioningIP": "172.22.0.3",
                    "bootstrapProvisioningIP": "172.22.0.2",
                    "externalBridge": "baremetal",
                    "externalMACAddress": "52:54:00:12:e1:68",
                    "provisioningNetwork": "Managed",
                    "provisioningBridge": "provisioning",
                    "provisioningMACAddress": "52:54:00:82:91:8d",
                    "provisioningNetworkInterface": "",
                    "provisioningNetworkCIDR": "172.22.0.0/24",
                    "provisioningDHCPRange": "172.22.0.10,172.22.0.254",
                    "hosts": null,
                    "apiVIPs": [
                        "10.1.101.7",
                        "2620:52:0:165::7"
                    ],
                    "ingressVIPs": [
                        "10.1.101.9",
                        "2620:52:0:165::9"
                    ]

The install-config.yaml used to generate this has the following snippet:
platform:
  baremetal:
    apiVIPs:
    - 10.1.101.7
    - 2620:52:0:165::7
    ingressVIPs:
    - 10.1.101.9
    - 2620:52:0:165::9
additionalTrustBundle: |

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Happens every time

Steps to Reproduce:

1. Use install-config.yaml with no platform baremetal fields except for the VIPs
2. run openshift-install agent create image 

Actual results:

Warning messages are output

Expected results:

No warning messags

Additional info:

 

This is a clone of issue OCPBUGS-3114. The following is the description of the original issue:

Description of problem:

When running a Hosted Cluster on Hypershift the cluster-networking-operator never progressed to Available despite all the components being up and running

Version-Release number of selected component (if applicable):

quay.io/openshift-release-dev/ocp-release:4.11.11-x86_64 for the hosted clusters
hypershift operator is quay.io/hypershift/hypershift-operator:4.11
4.11.9 management cluster

How reproducible:

Happened once

Steps to Reproduce:

1.
2.
3.

Actual results:

oc get co network reports False availability

Expected results:

oc get co network reports True availability

Additional info:

 

Note: This issue is a duplicate of OCPBUGS-10238 intended to target the 4.12 version.

Description of problem:

Updates to the `.spec.updateStrategy.registryPoll.interval` fields for a default CatalogSource are reverted.

Version-Release number of selected component (if applicable):

4.12.5

How reproducible:

100%

Steps to Reproduce:

$ oc get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.12.5    True        False         86m     Cluster version is 4.12.5
$ oc get catalogsource  -n openshift-marketplace redhat-operators -o jsonpath='{.spec.updateStrategy.registryPoll.interval}'
10m
$ oc patch -n openshift-marketplace catalogsource/redhat-operators --type=merge -p '{"spec":{"updateStrategy":{"registryPoll":{"interval":"30m0s"}}}}'
catalogsource.operators.coreos.com/redhat-operators patched

Actual results:

$ oc get catalogsource  -n openshift-marketplace redhat-operators -o jsonpath='{.spec.updateStrategy.registryPoll.interval}' 
10m
$ oc logs -n openshift-marketplace deployment/marketplace-operator time="2023-03-14T09:43:58Z" level=info msg="[defaults] Restoring CatalogSource redhat-operators" time="2023-03-14T09:43:58Z" level=info msg="[defaults] CatalogSource redhat-operators is annotated and its spec is the same as the default spec"

Expected results:

In 4.12.3 the updated value remains:

$ oc get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.12.3    True        False         15d     Cluster version is 4.12.3
$ oc get catalogsource  -n openshift-marketplace redhat-operators -o jsonpath='{.spec.updateStrategy.registryPoll.interval}'
10m
$ oc patch -n openshift-marketplace catalogsource/redhat-operators --type=merge -p '{"spec":{"updateStrategy":{"registryPoll":{"interval":"30m0s"}}}}'
catalogsource.operators.coreos.com/redhat-operators patched
$ oc get catalogsource  -n openshift-marketplace redhat-operators -o jsonpath='{.spec.updateStrategy.registryPoll.interval}'
30m0s

Additional info:

 

This is a clone of issue OCPBUGS-6647. The following is the description of the original issue:

Description of problem:

Resource type drop-down menu item 'Last used' is in English

Version-Release number of selected component (if applicable):

4.12

How reproducible:

 

Steps to Reproduce:

1. Navigate to kube:admin -> User Preferences -> Applications
2. Click on Resource type dorp-down

Actual results:

Content is in English

Expected results:

Content should be in target language

Additional info:

Screenshot reference provided

This is a clone of issue OCPBUGS-6651. The following is the description of the original issue:

Description of problem:

When running a hypershift HostedCluster with a publicAndPrivate / private setup behind a proxy, Nodes never go ready.

ovn-kubernetes pods fail to run because the init container fails.

[root@ip-10-0-129-223 core]# crictl logs cf142bb9f427d
+ [[ -f /env/ ]]
++ date -Iseconds
2023-01-25T12:18:46+00:00 - checking sbdb
+ echo '2023-01-25T12:18:46+00:00 - checking sbdb'
+ echo 'hosts: dns files'
+ proxypid=15343
+ ovndb_ctl_ssl_opts='-p /ovn-cert/tls.key -c /ovn-cert/tls.crt -C /ovn-ca/ca-bundle.crt'
+ sbdb_ip=ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645
+ retries=0
+ ovn-sbctl --no-leader-only --timeout=5 --db=ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645 -p /ovn-cert/tls.key -c /ovn-cert/tls.crt -C /ovn-ca/ca-bundle.crt get-connection
+ exec socat TCP-LISTEN:9645,reuseaddr,fork PROXY:10.0.140.167:ovnkube-sbdb.apps.agl-proxy.hypershift.local:443,proxyport=3128
ovn-sbctl: ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645: database connection failed ()
+ ((  retries += 1  ))


Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always.

Steps to Reproduce:

1. Create a publicAndPrivate hypershift HostedCluster behind a proxy. E.g"
➜  hypershift git:(main) ✗ ./bin/hypershift create cluster \
aws --pull-secret ~/www/pull-secret-ci.txt \
--ssh-key ~/.ssh/id_ed25519.pub \
--name agl-proxy \
--aws-creds ~/www/config/aws-osd-hypershift-creds \
--node-pool-replicas=3 \
--region=us-east-1 \
--base-domain=agl.hypershift.devcluster.openshift.com \
--zones=us-east-1a \
--endpoint-access=PublicAndPrivate \
--external-dns-domain=agl-services.hypershift.devcluster.openshift.com --enable-proxy=true

2. Get the kubeconfig for the guest cluster. E.g
kubectl get secret -nclusters agl-proxy-admin-kubeconfig  -oyaml

3. Get pods in the guest cluster.
See ovnkube-node pods init container failing with
[root@ip-10-0-129-223 core]# crictl logs cf142bb9f427d
+ [[ -f /env/ ]]
++ date -Iseconds
2023-01-25T12:18:46+00:00 - checking sbdb
+ echo '2023-01-25T12:18:46+00:00 - checking sbdb'
+ echo 'hosts: dns files'
+ proxypid=15343
+ ovndb_ctl_ssl_opts='-p /ovn-cert/tls.key -c /ovn-cert/tls.crt -C /ovn-ca/ca-bundle.crt'
+ sbdb_ip=ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645
+ retries=0
+ ovn-sbctl --no-leader-only --timeout=5 --db=ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645 -p /ovn-cert/tls.key -c /ovn-cert/tls.crt -C /ovn-ca/ca-bundle.crt get-connection
+ exec socat TCP-LISTEN:9645,reuseaddr,fork PROXY:10.0.140.167:ovnkube-sbdb.apps.agl-proxy.hypershift.local:443,proxyport=3128
ovn-sbctl: ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645: database connection failed ()
+ ((  retries += 1  ))

To create a bastion an ssh into the Nodes See https://hypershift-docs.netlify.app/how-to/debug-nodes/

Actual results:

Nodes unready

Expected results:

Nodes go ready

Additional info:

 

This is a clone of issue OCPBUGS-881. The following is the description of the original issue:

Description of problem:

Create install-config file for vsphere IPI against 4.12.0-0.nightly-2022-09-02-194931, fail as apiVIP and ingressVIP are not in machine CIDR.

$ ./openshift-install create install-config --dir ipi                
? Platform vsphere
? vCenter xxxxxxxx
? Username xxxxxxxx
? Password [? for help] ********************
INFO Connecting to xxxxxxxx
INFO Defaulting to only available datacenter: SDDC-Datacenter 
INFO Defaulting to only available cluster: Cluster-1 
INFO Defaulting to only available datastore: WorkloadDatastore 
? Network qe-segment
? Virtual IP Address for API 172.31.248.137
? Virtual IP Address for Ingress 172.31.248.141
? Base Domain qe.devcluster.openshift.com 
? Cluster Name jimavmc       
? Pull Secret [? for help] ****************************************************************************************************************************************************************************************
FATAL failed to fetch Install Config: failed to generate asset "Install Config": invalid install config: [platform.vsphere.apiVIPs: Invalid value: "172.31.248.137": IP expected to be in one of the machine networks: 10.0.0.0/16, platform.vsphere.ingressVIPs: Invalid value: "172.31.248.141": IP expected to be in one of the machine networks: 10.0.0.0/16] 

As user could not define cidr for machineNetwork when creating install-config file interactively, it will use default value 10.0.0.0/16, so fail to create install-config when inputting apiVIP and ingressVIP outside of default machinenNetwork.

Error is thrown from https://github.com/openshift/installer/blob/master/pkg/types/validation/installconfig.go#L655-L666, seems new function introduced from PR https://github.com/openshift/installer/pull/5798

The issue should also impact Nutanix platform.
 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-02-194931

How reproducible:

Always

Steps to Reproduce:

1. create install-config.yaml file by running command "./openshift-install create install-config --dir ipi"
2. failed with above error
3.

Actual results:

fail to create install-config.yaml file

Expected results:

succeed to create install-config.yaml file

Additional info:

 

When multi-cluster is enabled, it possible to get in a situation where you can't cancel login. If you select a cluster you don't know the credentials for, console will remember the last cluster and repeatedly send you to the login page with no way to cancel or go back. If we decide to set the last cluster in the user's preferences, it might be possible to get stuck even if you clear cookies and localStorage.

There are similar issues logging into cluster that are hibernating. See attached video.

cc Scott Berens

The relevant code in ironic-image was not updated to support TLS, so it still uses the old port and explicit http://

This is a clone of issue OCPBUGS-6270. The following is the description of the original issue:

Similar to how, due to the install-config validation, the baremetal platform previously required a bunch of fields that are actually ignored (OCPBUGS-3278), we similarly require values for the following fields in the platform.vsphere section:

  • vCenter
  • username
  • password
  • datacenter
  • defaultDatastore

None of these values are actually used in the agent-based installer at present, and they should not be required.

Users can work around this by specifying dummy values in the platform config (note that the VIP values are required and must be genuine):

platform:
  vsphere:
    apiVIP: 192.168.111.1
    ingressVIP: 192.168.111.2
    vCenter: a
    username: b
    password: c
    datacenter: d
    defaultDatastore: e

Description of problem:

OCP cluster installation (SNO) using assisted installer running on ACM hub cluster. 
Hub cluster is OCP 4.10.33
ACM is 2.5.4

When a cluster fails to install we remove the installation CRs and cluster namespace from the hub cluster (to eventually redeploy). The termination of the namespace hangs indefinitely (14+ hours) with finalizers remaining. 

To resolve the hang we can remove the finalizers by editing both the secret pointed to by BareMetalHost .spec.bmc.credentialsName and BareMetalHost CR. When these finalizers are removed the namespace termination completes within a few seconds.

Version-Release number of selected component (if applicable):

OCP 4.10.33
ACM 2.5.4

How reproducible:

Always

Steps to Reproduce:

1. Generate installation CRs (AgentClusterInstall, BMH, ClusterDeployment, InfraEnv, NMStateConfig, ...) with an invalid configuration parameter. Two scenarios validated to hit this issue:
  a. Invalid rootDeviceHint in BareMetalHost CR
  b. Invalid credentials in the secret referenced by BareMetalHost.spec.bmc.credentialsName
2. Apply installation CRs to hub cluster
3. Wait for cluster installation to fail
4. Remove cluster installation CRs and namespace

Actual results:

Cluster namespace remains in terminating state indefinitely:
$ oc get ns cnfocto1
NAME       STATUS        AGE    
cnfocto1   Terminating   17h

Expected results:

Cluster namespace (and all installation CRs in it) are successfully removed.

Additional info:

The installation CRs are applied to and removed from the hub cluster using argocd. The CRs have the following waves applied to them which affects the creation order (lowest to highest) and removal order (highest to lowest):
Namespace: 0
AgentClusterInstall: 1
ClusterDeployment: 1
NMStateConfig: 1
InfraEnv: 1
BareMetalHost: 1
HostFirmwareSettings: 1
ConfigMap: 1 (extra manifests)
ManagedCluster: 2
KlusterletAddonConfig: 2

 

Description of problem:

The error message of "opm alpha render-veneer semver" is not correct, "semver &{%!q(*os.file=&{{{0 0 0} 3 {0} 0 1 true true true}" is meaningless, should not be printed.

Version-Release number of selected component (if applicable):

zhaoxia@xzha-mac operator-framework-olm % opm version
Version: version.Version{OpmVersion:"2149aebcc", GitCommit:"2149aebcc71367e6fba8f5416374917dae1e6a1c", BuildDate:"2022-09-08T04:31:47Z", GoOs:"darwin", GoArch:"amd64"}

How reproducible:

always

Steps to Reproduce:

1. create file
zhaoxia@xzha-mac OCP-53915 % cat catalog-semver-veneer-1.yaml
Schema: olm.semver
Candidate:
  Bundles:
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v0.0.1
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v1.0.1
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v1.0.1-alpha
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v1.0.1-beta
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v1.0.1-alpha20220829
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v1.0.1-alpha20220830
Stable:
  Bundles:
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v1.0.1-beta
Fast:
  Bundles:
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v0.0.1
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v1.0.1-beta

2. run "opm alpha render-veneer semver" 
zhaoxia@xzha-mac operator-framework-olm % opm alpha render-veneer semver catalog-semver-veneer-1.yaml
2022/09/08 12:35:05 semver &{%!q(*os.file=&{{{0 0 0} 3 {0} <nil> 0 1 true true true} catalog-semver-veneer-1.yaml <nil> false false false})}: semver-render: unable to post-process bundle info: encountered bundle versions which differ only by build metadata, which cannot be ordered: [bundle version "1.0.1-alpha" cannot be compared to "1.0.1-alpha", bundle version "1.0.1-alpha+20220829" cannot be compared to "1.0.1-alpha"] 

3.

Actual results:

"semver &{%!q(*os.file=&{{{0 0 0} 3 {0} 0 1 true true true}" is meaningless, should not be printed.

Expected results:

no error message "semver &{%!q(*os.file=&{{{0 0 0} 3 {0} 0 1 true true true}"

Additional info:

 

Description of problem:

This bug is a clone of https://bugzilla.redhat.com/show_bug.cgi?id=2109140 on odf-console side.
Corresponding PR needed to be merged in console as well.
Please, verify this Jira console's bug and https://bugzilla.redhat.com/show_bug.cgi?id=2109140 simultaneous. Steps are exactly same, no difference.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-2841. The following is the description of the original issue:

Currently the agent installer supports only x86_64 arch. The image creation command must fail if some other arch is configured different from x86_64

We want to have an allowed list of architectures.

allowed = ['x86_64', 'amd64']

Description of problem:

Git icon shown in the repository details page should be based on the git provider.

Version-Release number of selected component (if applicable):
4.11

How reproducible:
Always

Steps to Reproduce:
1. Create a Repository with gitlab repo url
2. Navigate to the detail page.

Actual results:

github icon is displayed for the gitlab url.

Expected results:

gitlab icon should be displayed for the gitlab url.

Additional info:

use `GitLabIcon` and `BitBucketIcon` from patternfly react-icons.

This is a clone of issue OCPBUGS-5542. The following is the description of the original issue:

Description of problem:
The project list orders projects by its name and is smart enough to keep a "numerical order" like:

  1. test-1
  2. test-2
  3. test-11

The more prominent project dropdown is not so smart and shows just a simple "ascii ordered" list:

  1. test-1
  2. test-11
  3. test-2

Version-Release number of selected component (if applicable):
4.8-4.13 (master)

How reproducible:
Always

Steps to Reproduce:
1. Create some new projects called test-1, test-11, test-2
2. Check the project list page (in admin perspective)
3. Check the project dropdown (in dev perspective)

Actual results:
Order is

  1. test-1
  2. test-11
  3. test-2

Expected results:
Order should be

  1. test-1
  2. test-2
  3. test-11

Additional info:
none

Catastrophic job runs where high numbers of tests fail are common. There are likely many root causes, but let's try to find one. This is a hard task because it's not "this one test failed, figure out why."

Clusters of failures are more common on certain platforms, it may be fruitful to start with the worst.

NURP's that average > 5 openshift-tests or openshift-tests-upgrade failures:

                      variants                       |          avg           
-----------------------------------------------------+------------------------
 {azure,amd64,ovn,upgrade,upgrade-micro,single-node} |   124.5294117647058824
 {azure,amd64,ovn,upgrade,upgrade-minor,single-node} |    92.9090909090909091
 {openstack,amd64,ovn,ha}                            |    49.2105263157894737
 {azure,amd64,sdn,ha,fips}                           |    25.6666666666666667
 {metal-ipi,amd64,ovn,ha}                            |    24.6000000000000000
 {openstack,amd64,ovn,ha,fips}                       |    23.5000000000000000
 {azure,amd64,ovn,ha,hypershift}                     |    22.6666666666666667
 {s390x,sdn,ha}                                      |    22.5454545454545455
 {gcp,amd64,ovn,ha}                                  |    21.5714285714285714
 {ppc64le,sdn,ha}                                    |    17.9545454545454545
 {metal-ipi,amd64,sdn,ha}                            |    17.6000000000000000
 {openstack,amd64,ovn,ha,serial}                     |    15.3333333333333333
 {azure,amd64,ovn,ha}                                |    15.1627906976744186
 {promote}                                           |    15.0000000000000000
 {aws,amd64,ovn,ha}                                  |    14.2558139534883721
 {metal-ipi,amd64,ovn,upgrade,upgrade-minor,ha}      |    13.9375000000000000
 {gcp,amd64,ovn,upgrade,upgrade-minor,ha,realtime}   |    11.2000000000000000
 {azure,amd64,sdn,upgrade,upgrade-minor,ha}          |     9.6842105263157895
 {never-stable}                                      |     9.0740740740740741
 {aws,amd64,ovn,single-node}                         |     8.8666666666666667
 {metal-ipi,amd64,sdn,upgrade,upgrade-micro,ha}      |     7.9090909090909091
 {azure,amd64,sdn,upgrade,upgrade-micro,ha}          |     6.4000000000000000
 {aws,amd64,sdn,ha}                                  |     5.7800000000000000
 {vsphere-ipi,amd64,ovn,ha}                          |     5.6458333333333333
 {openstack,amd64,ovn,upgrade,upgrade-minor,ha}      |     5.6250000000000000
 {metal-ipi,amd64,ovn,upgrade,upgrade-micro,ha}      |     5.5882352941176471
 {aws,amd64,sdn,upgrade,upgrade-micro,ha}            |     5.5789473684210526

Here's a sippy link for 4.12 job runs with > 50 failures: https://sippy.dptools.openshift.org/sippy-ng/jobs/4.12/runs?filters=%257B%2522items%2522%253A%255B%257B%2522columnField%2522%253A%2522test_failures%2522%252C%2522operatorValue%2522%253A%2522%253E%2522%252C%2522value%2522%253A%252250%2522%257D%252C%257B%2522columnField%2522%253A%2522overall_result%2522%252C%2522operatorValue%2522%253A%2522equals%2522%252C%2522value%2522%253A%2522F%2522%257D%255D%252C%2522linkOperator%2522%253A%2522and%2522%257D&sort=desc&sortField=timestamp

This is a clone of issue OCPBUGS-11054. The following is the description of the original issue:

This is a clone of issue OCPBUGS-11038. The following is the description of the original issue:

Description of problem:

Backport support starting in 4.12.z to a new GCP region europe-west12

Version-Release number of selected component (if applicable):

4.12.z and 4.13.z

How reproducible:

Always

Steps to Reproduce:

1. Use openhift-install to deploy OCP in europe-west12

Actual results:

europe-west12 is not available as a supported region in the user survey

Expected results:

europe-west12 to be available as a supported region in the user survey

Additional info:

 

Description of problem:

By creating network policies with a namespace that has maximum length, it can end up causing this error:

2023-06-22T17:34:40.804880959Z I0622 17:34:40.804851       1 obj_retry.go:318] Retry add failed for *v1.NetworkPolicy ocm-production-24gfm4t0rtdsg01bcqgihdrceh3t59na-mshen-incident/kas, will try again later: failed to create Network Policy ocm-production-24gfm4t0rtdsg01bcqgihdrceh3t59na-mshen-incident/kas: failed to create default deny port groups: error in transact with ops [
{Op:update Table:ACL Row:map[action:drop direction:to-lport external_ids:{GoMap:map[default-deny-policy-type:Ingress]} log:false match:outport == @a7686019953911959437_ingressDefaultDeny meter:{GoSet:[acl-logging]} name:{GoSet:[ocm-production-24gfm4t0rtdsg01bcqgihdrceh3t59na-mshen-incident_]} priority:1000] Rows:[] Columns:[] Mutations:[] Timeout:<nil> Where:[where column _uuid == {08cc8026-4c22-4c52-99cd-e8cd1469c8bd}] Until: Durable:<nil> Comment:<nil> Lock:<nil> UUIDName:} {Op:update Table:ACL Row:map[action:allow direction:to-lport external_ids:{GoMap:map[default-deny-policy-type:Ingress]} log:false match:outport == @a7686019953911959437_ingressDefaultDeny && (arp || nd) meter:{GoSet:[acl-logging]} name:{GoSet:[ocm-production-24gfm4t0rtdsg01bcqgihdrceh3t59na-mshen-incident_]} priority:1001] Rows:[] Columns:[] Mutations:[] Timeout:<nil> Where:[where column _uuid == {08cc8026-4c22-4c52-99cd-e8cd1469c8bd}] Until: Durable:<nil> Comment:<nil> Lock:<nil> UUIDName:} {Op:update Table:ACL Row:map[action:drop direction:from-lport external_ids:{GoMap:map[default-deny-policy-type:Egress]} log:false match:inport == @a7686019953911959437_egressDefaultDeny meter:{GoSet:[acl-logging]} name:{GoSet:[ocm-production-24gfm4t0rtdsg01bcqgihdrceh3t59na-mshen-incident_]} options:{GoMap:map[apply-after-lb:true]} priority:1000] Rows:[] Columns:[] Mutations:[] Timeout:<nil> Where:[where column _uuid == {f324353c-a47b-4044-9cd9-dbeef058ada3}] Until: Durable:<nil> Comment:<nil> Lock:<nil> UUIDName:}{Op:update Table:ACL Row:map[action:allow direction:from-lport external_ids:{GoMap:map[default-deny-policy-type:Egress]} log:false match:inport == @a7686019953911959437_egressDefaultDeny && (arp || nd) meter:{GoSet:[acl-logging]} name:{GoSet:[ocm-production-24gfm4t0rtdsg01bcqgihdrceh3t59na-mshen-incident_]} options:{GoMap:map[apply-after-lb:true]} priority:1001] Rows:[] Columns:[] Mutations:[] Timeout:<nil> Where:[where column _uuid == {f324353c-a47b-4044-9cd9-dbeef058ada3}] Until: Durable:<nil> Comment:<nil> Lock:<nil> UUIDName:}{Op:update Table:Port_Group Row:map[acls:{GoSet:[{GoUUID:08cc8026-4c22-4c52-99cd-e8cd1469c8bd} {GoUUID:08cc8026-4c22-4c52-99cd-e8cd1469c8bd}]} external_ids:{GoMap:map[name:a7686019953911959437_ingressDefaultDeny]} ports:{GoSet:[]}] Rows:[] Columns:[] Mutations:[] Timeout:<nil> Where:[where column _uuid == {d3b52500-963a-4f7b-8928-d869f298d2e8}] Until: Durable:<nil> Comment:<nil> Lock:<nil> UUIDName:}{Op:update Table:Port_Group Row:map[acls:{GoSet:[{GoUUID:f324353c-a47b-4044-9cd9-dbeef058ada3} {GoUUID:f324353c-a47b-4044-9cd9-dbeef058ada3}]} external_ids:{GoMap:map[name:a7686019953911959437_egressDefaultDeny]} ports:{GoSet:[]}] Rows:[] Columns:[] Mutations:[] Timeout:<nil> Where:[where column _uuid == {b128baec-6acd-4683-8c12-5b968bf73bd8}] Until: Durable:<nil> Comment:<nil> Lock:<nil> UUIDName:}]results [{Count:1 Error: Details: UUID:{GoUUID:} Rows:[]} {Count:1 Error: Details: UUID:{GoUUID:} Rows:[]} {Count:1 Error: Details: UUID:{GoUUID:} Rows:[]} {Count:1 Error: Details: UUID:{GoUUID:} Rows:[]} {Count:0 Error:ovsdb error Details:set contains duplicate UUID:{GoUUID:} Rows:[]} {Count:0 Error: Details: UUID:{GoUUID:} Rows:[]}] and errors [ovsdb error: set contains duplicate]: 1 ovsdb operations failed

 

This is not a problem in 4.14 as we moved to ACL indexes, but in 4.13 and before we compare the ACL name and the external ids. For default deny ACLs we simply store the direction in the external id, and the name of the ACL is limited to 63 characters in OVN. When we create default deny acls, we create one that denies everything, then we also create some allow acls to permit arp and neighbor discovery traffic. These 2 ACLs may be recognized as duplicate because their truncated name (namespace only) and their directions in external ids match.

 

This is a clone of issue OCPBUGS-8035. The following is the description of the original issue:

Description of problem:

install discnnect private cluster, ssh to master/bootstrap nodes from the bastion on the vpc failed.

Version-Release number of selected component (if applicable):

Pre-merge build https://github.com/openshift/installer/pull/6836
registry.build05.ci.openshift.org/ci-ln-5g4sj02/release:latest
Tag: 4.13.0-0.ci.test-2023-02-27-033047-ci-ln-5g4sj02-latest

How reproducible:

always

Steps to Reproduce:

1.Create bastion instance maxu-ibmj-p1-int-svc 
2.Create vpc on the bastion host 
3.Install private disconnect cluster on the bastion host with mirror registry 
4.ssh to the bastion  
5.ssh to the master/bootstrap nodes from the bastion 

Actual results:

[core@maxu-ibmj-p1-int-svc ~]$ ssh -i ~/openshift-qe.pem core@10.241.0.5 -v
OpenSSH_8.8p1, OpenSSL 3.0.5 5 Jul 2022
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Reading configuration data /etc/ssh/ssh_config.d/50-redhat.conf
debug1: Reading configuration data /etc/crypto-policies/back-ends/openssh.config
debug1: configuration requests final Match pass
debug1: re-parsing configuration
debug1: Reading configuration data /etc/ssh/ssh_config
debug1: Reading configuration data /etc/ssh/ssh_config.d/50-redhat.conf
debug1: Reading configuration data /etc/crypto-policies/back-ends/openssh.config
debug1: Connecting to 10.241.0.5 [10.241.0.5] port 22.
debug1: connect to address 10.241.0.5 port 22: Connection timed out
ssh: connect to host 10.241.0.5 port 22: Connection timed out

Expected results:

ssh succeed.

Additional info:

$ibmcloud is sg-rules r014-5a6c16f4-8a4c-4c02-ab2d-626c14f72a77 --vpc maxu-ibmj-p1-vpc
Listing rules of security group r014-5a6c16f4-8a4c-4c02-ab2d-626c14f72a77 under account OpenShift-QE as user ServiceId-dff277a9-b608-410a-ad24-c544e59e3778...
ID                                          Direction   IP version   Protocol                      Remote   
r014-6739d68f-6827-41f4-b51a-5da742c353b2   outbound    ipv4         all                           0.0.0.0/0   
r014-06d44c15-d3fd-4a14-96c4-13e96aa6769c   inbound     ipv4         all                           shakiness-perfectly-rundown-take   r014-25b86956-5370-4925-adaf-89dfca9fb44b   inbound     ipv4         tcp Ports:Min=22,Max=22       0.0.0.0/0   
r014-e18f0f5e-c4e5-44a5-b180-7a84aa59fa97   inbound     ipv4         tcp Ports:Min=3128,Max=3129   0.0.0.0/0   
r014-7e79c4b7-d0bb-4fab-9f5d-d03f6b427d89   inbound     ipv4         icmp Type=8,Code=0            0.0.0.0/0   
r014-03f23b04-c67a-463d-9754-895b8e474e75   inbound     ipv4         tcp Ports:Min=5000,Max=5000   0.0.0.0/0   
r014-8febe8c8-c937-42b6-b352-8ae471749321   inbound     ipv4         tcp Ports:Min=6001,Max=6002   0.0.0.0/0   

This is a clone of issue OCPBUGS-3277. The following is the description of the original issue:

I saw this occur one time when running installs in a continuous loop. This was with COMPaCT_IPV4 in a non-disconnected setup.

WaitForBootrapComplete shows it can't access the API

level=info msg=Unable to retrieve cluster metadata from Agent Rest API: no clusterID known for the cluster
level=debug msg=cluster is not registered in rest API
level=debug msg=infraenv is not registered in rest API

This is because create-cluster-and-infraenv.service failed

Failed Units: 2
  create-cluster-and-infraenv.service
  NetworkManager-wait-online.service

The agentbasedinstaller register command wasn't able to retrieve the image to get the version

Nov 03 23:03:24 master-0 create-cluster-and-infraenv[2702]: time="2022-11-03T23:03:24Z" level=error msg="command 'oc adm release info -o template --template '\{{.metadata.version}}' --insecure=false registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451 --registry-config=/tmp/registry-config3852044519' exited with non-zero exit code 1: \nerror: unable to read image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451: Get \"https://registry.ci.openshift.org/v2/\": dial tcp: lookup registry.ci.openshift.org on 192.168.111.1:53: read udp 192.168.111.80:51315->192.168.111.1:53: i/o timeout\n"
Nov 03 23:03:24 master-0 create-cluster-and-infraenv[2702]: time="2022-11-03T23:03:24Z" level=error msg="failed to get image openshift version from release image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451" error="command 'oc adm release info -o template --template '\{{.metadata.version}}' --insecure=false registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451 --registry-config=/tmp/registry-config3852044519' exited with non-zero exit code 1: \nerror: unable to read image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451: Get \"https://registry.ci.openshift.org/v2/\": dial tcp: lookup registry.ci.openshift.org on 192.168.111.1:53: read udp 192.168.111.80:51315->192.168.111.1:53: i/o timeout\n"

This occurs when attempting to get the release here:
https://github.com/openshift/assisted-service/blob/master/cmd/agentbasedinstaller/register.go#L58

 

We should add a retry mechanism or restart the service to handle spurious network failures like this.

 

 

This is a clone of issue OCPBUGS-95. The following is the description of the original issue:

In an OpenShift cluster with OpenShiftSDN network plugin with egressIP and NMstate operator configured, there are some conditions when the egressIP is deconfigured from the network interface.

 

The bug is 100% reproducible.

Steps for reproducing the issue are:

1. Install a cluster with OpenShiftSDN network plugin.

2. Configure egressip for a project.

3. Install NMstate operator.

4. Create a NodeNetworkConfigurationPolicy.

5. Identify on which node the egressIP is present.

6. Restart the nmstate-handler pod running on the identified node.

7. Verify that the egressIP is no more present.

Restarting the sdn pod related to the identified node will reconfigure the egressIP in the node.

This issue has a high impact since any changes triggered for the NMstate operator will prevent application traffic. For example, in the customer environment, the issue is triggered any time a new node is added to the cluster.

The expectation is that NMstate operator should not interfere with SDN configuration.

This is a clone of issue OCPBUGS-3767. The following is the description of the original issue:

Description of problem:

Start maintenance action moved from Nodes tab to Bare Metal Hosts tab

Version-Release number of selected component (if applicable):

Cluster version is 4.12.0-0.nightly-2022-11-15-024309

How reproducible:

100%

Steps to Reproduce:

1. Install Node Maintenance operator
2. Go Compute -> Nodes
3. Start maintenance from 3dots menu of worker-0-0
see https://docs.openshift.com/container-platform/4.11/nodes/nodes/eco-node-maintenance-operator.html#eco-setting-node-maintenance-actions-web-console_node-maintenance-operator

Actual results:

No 'Start maintenance' option

Expected results:

Maintenance started successfully

Additional info:

worked for 4.11

 

 

This is a clone of issue OCPBUGS-7374. The following is the description of the original issue:

Originally reported by lance5890 in issue https://github.com/openshift/cluster-etcd-operator/issues/1000

The controllers sometimes get stuck on listing members in failure scenarios, this is known and can be mitigated by simply restarting the CEO. 

similar BZ 2093819 with stuck controllers was fixed slightly different in https://github.com/openshift/cluster-etcd-operator/commit/4816fab709e11e0681b760003be3f1de12c9c103

 

This fix was contributed by lance5890, thanks a lot!

 

This is a clone of issue OCPBUGS-10807. The following is the description of the original issue:

Description of problem:

Cluster Network Operator managed component multus-admission-controller does not conform to Hypershift control plane expectations.

When CNO is managed by Hypershift, multus-admission-controller and other CNO-managed deployments should run with non-root security context. If Hypershift runs control plane on kubernetes (as opposed to Openshift) management cluster, it adds pod security context to its managed deployments, including CNO, with runAsUser element inside. In such a case CNO should do the same, set security context for its managed deployments, like multus-admission-controller, to meet Hypershift security rules.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1.Create OCP cluster using Hypershift using Kube management cluster
2.Check pod security context of multus-admission-controller

Actual results:

no pod security context is set on multus-admission-controller

Expected results:

pod security context is set with runAsUser: xxxx

Additional info:

Corresponding CNO change 

This is a clone of issue OCPBUGS-3186. The following is the description of the original issue:

Description of problem:

fail to get clear error message when zones is not match with the the subnets in BYON

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. install-config.yaml 
 yq '.controlPlane.platform.ibmcloud.zones,.platform.ibmcloud.controlPlaneSubnets' install-config.yaml 
["ca-tor-1", "ca-tor-2", "ca-tor-3"]
- ca-tor-existing-network-1-cp-ca-tor-2
- ca-tor-existing-network-1-cp-ca-tor-3
2. openshift-install create manifests --dir byon-az-test-1

Actual results:

FATAL failed to fetch Master Machines: failed to generate asset "Master Machines": failed to create master machine objects: failed to create provider: no subnet found for ca-tor-1

Expected results:

more clear error message in install-config.yaml

Additional info:

 

 

 

 

 Currently on summery logs if there is kube-api issue controller will not upload logs but it should as it has file to read them from

Description of problem:

 

Version-Release number of selected component (if applicable):

 

How reproducible:

1 The debugging endpoint /debug/pprof is exposed over the unauthenticated 10251 port
2 This debugging endpoint can potentially leak sensitive information

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-6799. The following is the description of the original issue:

Description of problem:
The pipelines -> repositories list view in Dev Console does not show the running pipelineline as the last pipelinerun in the table.

Original BugZilla Link: https://bugzilla.redhat.com/show_bug.cgi?id=2016006
OCPBUGSM: https://issues.redhat.com/browse/OCPBUGSM-36408

This is a clone of issue OCPBUGS-4350. The following is the description of the original issue:

Steps to reproduce:
Release: 4.13.0-0.nightly-2022-11-30-183109 (latest 4.12 nightly as well)
Create a HyperShift cluster on AWS, wait til its completed rolling out
Upgrade the HostedCluster by updating its release image to a newer one
Observe the 'network' clusteroperator resource in the guest cluster as well as the 'version' clusterversion resource in the guest cluster.
When the clusteroperator resource reports the upgraded release and the clusterversion resource reports the new release as applied, take a look at the ovnkube-master statefulset in the control plane namespace of the management cluster. It is still not finished rolling out.

Expected: that the network clusteroperator reports the new version only when all components have finished rolling out.

This is a clone of issue OCPBUGS-3316. The following is the description of the original issue:

Description of problem:

Branch name in repository pipelineruns list view should match the actual github branch name.

Version-Release number of selected component (if applicable):

4.11.z

How reproducible:

alwaus

Steps to Reproduce:

1. Create a repository
2. Trigger the pipelineruns by push or pull request event on the github 

Actual results:

Branch name contains "refs-heads-" prefix in front of the actual branch name eg: "refs-heads-cicd-demo" (cicd-demo is the branch name)

Expected results:

Branch name should be the acutal github branch name. just `cicd-demo`should be shown in the branch column.

 

Additional info:
Ref: https://coreos.slack.com/archives/CHG0KRB7G/p1667564311865459

This is a clone of issue OCPBUGS-15722. The following is the description of the original issue:

This is a clone of issue OCPBUGS-14665. The following is the description of the original issue:

Description of problem:

In Helm Charts we define a values.schema.json file - a JSON schema for all the possible values the user can set in a chart. This schema needs to follow JSON schema standard. The standard includes something called $ref - a reference to the either local or remote definition. If we use a schema with remote references in OCP, it causes various troubles in OCP. Different OCP versions gives different results, also on the same OCP version you can get different results based on how tight down the cluster networking is.

Prerequisites (if any, like setup, operators/versions):

Tried in Developer Sandbox, OpenShift Local, Baremetal Public Cluster in Operate First, OCP provisioned through clusterbot. It behaves differently in each instance. Individual cases are described below.

Steps to Reproduce

1. Go to the "Helm" tab in Developer Perspective
2. Click "Create" in top right and select "Repository"
3. Use following ProjectHelmChartRepository resource and click "Create" (this repo contains single chart, this chart has values.schema.json with content linked below):

apiVersion: helm.openshift.io/v1beta1
kind: ProjectHelmChartRepository
metadata:
  name: reproducer
spec:
  connectionConfig:
    url: https://raw.githubusercontent.com/tumido/helm-backstage/reproducer

4. Go back the "Helm" tab in Developer Perspective
5. Click "Create" in top right and select "Helm Release"
6. In filters section of the catalog in the "Chart repositories" select "Reproducer"
7. Click on the single tile available (Backstage)
8. Click "Install Helm Chart"
9. Either you will be greeted with various error screens or you see the "YAML view" tab (this tab selection is not the default and is remembered during user session only I suppose)
10. Select "Form view"

Actual results:

Various error screens depending on OCP version and network restrictions. I've attached screen captures how it behaves in different settings.

Expected results:

Either render the form view (resolve remote references) or make it obvious that remote references are not supporter. Optionally fallback to the "YAML view" regarding that user doesn't have full schema available, but the chart is still deployable.

Reproducibility (Always/Intermittent/Only Once):

Depends on the environment
Always in OpenShift Local, Developer Sandbox, cluster bot clusters

Build Details:

Workaround:

1. Select any other chart to install, click "Install Helm Chart"
2. Change the view to "YAML view"
3. Go back to the Helm catalog without actually deploying anything
4. Select the faulty chart and click "Install Helm Chart"
5. Proceed with installation

Additional info:

Description of problem:

If using ingresscontroller.spec.routeSelector.matchExpressions or ingresscontroller.spec.namespaceSelector.matchExpressions, the route will not count in the new route_metrics_controller_routes_per_shard prometheus metric.

This is due to the logic only using "matchLabels". The logic needs to be updated to also use "matchExpressions".

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1. Create IC with matchExpressions:
oc apply -f - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: sharded
  namespace: openshift-ingress-operator
spec:
  domain: reproducer.$domain
  routeSelector:
    matchExpressions:
    - key: type
      operator: In
      values:
      - shard
  replicas: 1
  nodePlacement:
    nodeSelector:
      matchLabels:
        node-role.kubernetes.io/worker: ""
EOF

2. Create the route:
oc apply -f - <<EOF
apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: route-shard
  labels:
    type: shard
spec:
  to:
    kind: Service
    name: router-shard
EOF

 3. Check route_metrics_controller_routes_per_shard{name="sharded"} in prometheus, it's 0 

Actual results:

route_metrics_controller_routes_per_shard{name="sharded"} has 0 routes

Expected results:

route_metrics_controller_routes_per_shard{name="sharded"} should have 1 route

Additional info:

 

Description of problem:

Customer has noticed that object count quotas ("count/*") do not work for certain objects in ClusterResourceQuotas. For example, the following ResourceQuota works as expected:

~~~
apiVersion: v1
kind: ResourceQuota
metadata:
[..]
spec:
  hard:
    count/routes.route.openshift.io: "900"
    count/servicemonitors.monitoring.coreos.com: "100"
    pods: "100"
status:
  hard:
    count/routes.route.openshift.io: "900"
    count/servicemonitors.monitoring.coreos.com: "100"
    pods: "100"
  used:
    count/routes.route.openshift.io: "0"
    count/servicemonitors.monitoring.coreos.com: "1"
    pods: "4"
~~~

However when using "count/servicemonitors.monitoring.coreos.com" in ClusterResourceQuotas, this does not work (note the missing "used"):

~~~
apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
[..]
spec:
  quota:
    hard:
      count/routes.route.openshift.io: "900"
      count/servicemonitors.monitoring.coreos.com: "100"
      count/simon.krenger.ch: "100"
      pods: "100"
  selector:
    annotations:
      openshift.io/requester: kube:admin
status:
  namespaces:
[..]
  total:
    hard:
      count/routes.route.openshift.io: "900"
      count/servicemonitors.monitoring.coreos.com: "100"
      count/simon.krenger.ch: "100"
      pods: "100"
    used:
      count/routes.route.openshift.io: "0"
      pods: "4"
~~~

This behaviour does not only apply to "servicemonitors.monitoring.coreos.com" objects, but also to other objects, such as:

- count/kafkas.kafka.strimzi.io: '0' - count/prometheusrules.monitoring.coreos.com: '100' - count/servicemonitors.monitoring.coreos.com: '100' 

The debug output for kube-controller-manager shows the following entries, which may or may not be related:

~~~
$ oc logs kube-controller-manager-ip-10-0-132-228.eu-west-1.compute.internal | grep "servicemonitor" I0511 15:07:17.297620 1 patch_informers_openshift.go:90] Couldn't find informer for monitoring.coreos.com/v1, Resource=servicemonitors I0511 15:07:17.297630 1 resource_quota_monitor.go:181] QuotaMonitor using a shared informer for resource "monitoring.coreos.com/v1, Resource=servicemonitors" I0511 15:07:17.297642 1 resource_quota_monitor.go:233] QuotaMonitor created object count evaluator for servicemonitors.monitoring.coreos.com [..] I0511 15:07:17.486279 1 patch_informers_openshift.go:90] Couldn't find informer for monitoring.coreos.com/v1, Resource=servicemonitors I0511 15:07:17.486297 1 graph_builder.go:176] using a shared informer for resource "monitoring.coreos.com/v1, Resource=servicemonitors", kind "monitoring.coreos.com/v1, Kind=ServiceMonitor" ~~~

Version-Release number of selected component (if applicable):

OpenShift Container Platform 4.12.15

How reproducible:

Always

Steps to Reproduce:

1. On an OCP 4.12 cluster, create the following ClusterResourceQuota:

~~~
apiVersion: quota.openshift.io/v1
kind: ClusterResourceQuota
metadata:
  name: case-03509174
spec:
  quota: 
    hard:
      count/servicemonitors.monitoring.coreos.com: "100"
      pods: "100"
  selector:
    annotations: 
      openshift.io/requester: "kube:admin"
~~~

2. As "kubeadmin", create a new project and deploy one new ServiceMonitor, for example: 

~~~
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
  name: simon-servicemon-2
  namespace: simon-1
spec:
  endpoints:
    - path: /metrics
      port: http
      scheme: http
  jobLabel: component
  selector:
    matchLabels:
      deployment: echoenv-1
~~~

Actual results:

The "used" field for ServiceMonitors is not populated in the ClusterResourceQuota for certain objects. It is unclear if these quotas are enforced or not

Expected results:

ClusterResourceQuota for ServiceMonitors is updated and enforced

Additional info:

* Must-gather for a cluster showing this behaviour (added debug for kube-controller-manager) is available here: https://drive.google.com/file/d/1ioEEHZQVHG46vIzDdNm6pwiTjkL9QQRE/view?usp=share_link
* Slack discussion: https://redhat-internal.slack.com/archives/CKJR6200N/p1683876047243989

This is a clone of issue OCPBUGS-16160. The following is the description of the original issue:

This is a clone of issue OCPBUGS-16135. The following is the description of the original issue:

Description of problem:

The control-plane-operator pod gets stuck deleting an awsendpointservice if its hostedzone is already gone:

Logs:

{"level":"error","ts":"2023-07-13T03:06:58Z","msg":"Reconciler error","controller":"awsendpointservice","controllerGroup":"hypershift.openshift.io","controllerKind":"AWSEndpointService","aWSEndpointService":{"name":"private-router","namespace":"ocm-staging-24u87gg3qromrf8mg2r2531m41m0c1ji-diegohcp-west2"},"namespace":"ocm-staging-24u87gg3qromrf8mg2r2531m41m0c1ji-diegohcp-west2","name":"private-router","reconcileID":"59eea7b7-1649-4101-8686-78113f27567d","error":"failed to delete resource: NoSuchHostedZone: No hosted zone found with ID: Z05483711XJV23K8E97HK\n\tstatus code: 404, request id: f8686dd6-a906-4a5e-ba4a-3dd52ad50ec3","stacktrace":"sigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).processNextWorkItem\n\t/hypershift/vendor/sigs.k8s.io/controller-runtime/pkg/internal/controller/controller.go:273\nsigs.k8s.io/controller-runtime/pkg/internal/controller.(*Controller).Start.func2.2\n\t/hypershift/vendor/sigs.k8s.io/controller-runtime/pkg/internal/controller/controller.go:234"} 

Version-Release number of selected component (if applicable):

4.12.24

How reproducible:

Have not tried to reproduce yet, but should be fairly reproducible

Steps to Reproduce:

1. Install a PublicAndPrivate or Private HCP
2. Delete the Route53 Hosted Zone defined in its awsendpointservice's .status.dnsZoneID field
3. Observe the control-plane-operator looping on the above logs and the uninstall hanging

Actual results:

Uninstall hangs due to CPO being unable to delete the awsendpointservice

Expected results:

awsendpointservice cleans up, if the hosted zone is already gone CPO shouldn't care that it can't list hosted zones

Additional info:

 

This is a clone of issue OCPBUGS-2384. The following is the description of the original issue:

Version:
$ openshift-install version
openshift-install 4.10.0-0.nightly-2021-12-23-153012
built from commit 94a3ed9cbe4db66dc50dab8b85d2abf40fb56426
release image registry.ci.openshift.org/ocp/release@sha256:39cacdae6214efce10005054fb492f02d26b59fe9d23686dc17ec8a42f428534
release architecture amd64

Platform: alibabacloud

Please specify:

  • IPI (automated install with `openshift-install`. If you don't know, then it's IPI)

What happened?
Unexpected error of 'Internal publish strategy is not supported on "alibabacloud" platform', because Internal publish strategy should be supported for "alibabacloud", please clarify otherwise, thanks!

$ openshift-install create install-config --dir work
? SSH Public Key /home/jiwei/.ssh/openshift-qe.pub
? Platform alibabacloud
? Region us-east-1
? Base Domain alicloud-qe.devcluster.openshift.com
? Cluster Name jiwei-uu
? Pull Secret [? for help] *********
INFO Install-Config created in: work
$
$ vim work/install-config.yaml
$ yq e '.publish' work/install-config.yaml
Internal
$ openshift-install create cluster --dir work --log-level info
FATAL failed to fetch Metadata: failed to load asset "Install Config": invalid "install-config.yaml" file: publish: Invalid value: "Internal": Internal publish strategy is not supported on "alibabacloud" platform
$

What did you expect to happen?
"publish: Internal" should be supported for platform "alibabacloud".

How to reproduce it (as minimally and precisely as possible)?
Always

Description of problem:

Not all rules removed from iptables after disabling multinetworkpolicy

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1. Configure sriov (nodepolicy + sriovnetwork)
2. Configure 2 pods
3. enable MutiNetworkPolicy
4. apply ~20 rules for pod1:
 spec:
  podSelector:
    matchLabels:
      pod: pod1
  policyTypes:
  - Ingress
  ingress: []
5. Disable multinetworkpolicy
6. send ping pod2 => pod1

Actual results:

Traffic is still blocked

Expected results:

Traffic should be passed

Additional info:

Before disabling multiNetworkPolicy:
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default net-attach-def:ns1/sriovnetwork2" -j MULTI-0-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default24 net-attach-def:ns1/sriovnetwork2" -j MULTI-1-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default17 net-attach-def:ns1/sriovnetwork2" -j MULTI-2-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default15 net-attach-def:ns1/sriovnetwork2" -j MULTI-3-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default14 net-attach-def:ns1/sriovnetwork2" -j MULTI-4-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default7 net-attach-def:ns1/sriovnetwork2" -j MULTI-5-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default5 net-attach-def:ns1/sriovnetwork2" -j MULTI-6-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default20 net-attach-def:ns1/sriovnetwork2" -j MULTI-7-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default19 net-attach-def:ns1/sriovnetwork2" -j MULTI-8-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default11 net-attach-def:ns1/sriovnetwork2" -j MULTI-9-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default10 net-attach-def:ns1/sriovnetwork2" -j MULTI-10-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default9 net-attach-def:ns1/sriovnetwork2" -j MULTI-11-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default6 net-attach-def:ns1/sriovnetwork2" -j MULTI-12-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default3 net-attach-def:ns1/sriovnetwork2" -j MULTI-13-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default16 net-attach-def:ns1/sriovnetwork2" -j MULTI-14-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default13 net-attach-def:ns1/sriovnetwork2" -j MULTI-15-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default2 net-attach-def:ns1/sriovnetwork2" -j MULTI-16-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default22 net-attach-def:ns1/sriovnetwork2" -j MULTI-17-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default21 net-attach-def:ns1/sriovnetwork2" -j MULTI-18-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default18 net-attach-def:ns1/sriovnetwork2" -j MULTI-19-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default12 net-attach-def:ns1/sriovnetwork2" -j MULTI-20-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default8 net-attach-def:ns1/sriovnetwork2" -j MULTI-21-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default4 net-attach-def:ns1/sriovnetwork2" -j MULTI-22-INGRESS
-A MULTI-0-INGRESS -j DROP
-A MULTI-1-INGRESS -j DROP
-A MULTI-2-INGRESS -j DROP
-A MULTI-3-INGRESS -j DROP
-A MULTI-4-INGRESS -j DROP
-A MULTI-5-INGRESS -j DROP
-A MULTI-6-INGRESS -j DROP
-A MULTI-7-INGRESS -j DROP
-A MULTI-8-INGRESS -j DROP
-A MULTI-9-INGRESS -j DROP
-A MULTI-10-INGRESS -j DROP
-A MULTI-11-INGRESS -j DROP
-A MULTI-12-INGRESS -j DROP
-A MULTI-13-INGRESS -j DROP
-A MULTI-14-INGRESS -j DROP
-A MULTI-15-INGRESS -j DROP
-A MULTI-16-INGRESS -j DROP
-A MULTI-17-INGRESS -j DROP
-A MULTI-18-INGRESS -j DROP
-A MULTI-19-INGRESS -j DROP
-A MULTI-20-INGRESS -j DROP
-A MULTI-21-INGRESS -j DROP
-A MULTI-22-INGRESS -j DROP
=============================================================
After disabling multiNetworkPolicy:
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default5 net-attach-def:ns1/sriovnetwork2" -j MULTI-0-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default24 net-attach-def:ns1/sriovnetwork2" -j MULTI-1-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default17 net-attach-def:ns1/sriovnetwork2" -j MULTI-2-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default15 net-attach-def:ns1/sriovnetwork2" -j MULTI-3-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default7 net-attach-def:ns1/sriovnetwork2" -j MULTI-4-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default3 net-attach-def:ns1/sriovnetwork2" -j MULTI-5-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default20 net-attach-def:ns1/sriovnetwork2" -j MULTI-6-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default19 net-attach-def:ns1/sriovnetwork2" -j MULTI-7-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default9 net-attach-def:ns1/sriovnetwork2" -j MULTI-8-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default6 net-attach-def:ns1/sriovnetwork2" -j MULTI-9-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default16 net-attach-def:ns1/sriovnetwork2" -j MULTI-10-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default2 net-attach-def:ns1/sriovnetwork2" -j MULTI-11-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default22 net-attach-def:ns1/sriovnetwork2" -j MULTI-12-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default21 net-attach-def:ns1/sriovnetwork2" -j MULTI-13-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default18 net-attach-def:ns1/sriovnetwork2" -j MULTI-14-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default8 net-attach-def:ns1/sriovnetwork2" -j MULTI-15-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default4 net-attach-def:ns1/sriovnetwork2" -j MULTI-16-INGRESS
-A MULTI-0-INGRESS -j DROP
-A MULTI-1-INGRESS -j DROP
-A MULTI-2-INGRESS -j DROP
-A MULTI-3-INGRESS -j DROP
-A MULTI-4-INGRESS -j DROP
-A MULTI-5-INGRESS -j DROP
-A MULTI-6-INGRESS -j DROP
-A MULTI-7-INGRESS -j DROP
-A MULTI-8-INGRESS -j DROP
-A MULTI-9-INGRESS -j DROP
-A MULTI-10-INGRESS -j DROP
-A MULTI-11-INGRESS -j DROP
-A MULTI-12-INGRESS -j DROP
-A MULTI-13-INGRESS -j DROP
-A MULTI-14-INGRESS -j DROP
-A MULTI-15-INGRESS -j DROP
-A MULTI-16-INGRESS -j DROP

 

 Currently controller will set status done each time it sees host that is ready in k8s without looking if it was already set.

time="2022-09-13T19:03:45Z" level=info msg="Found new ready node ocp-2.cluster1.kpsalerno.us.ibm.com with inventory id 2da64d56-5057-78c6-ea6e-bf74a783bd79, kubernetes id 2da64d56-5057-78c6-ea6e-bf74a783bd79, updating its status to Done" func="github.com/openshift/assisted-installer/src/assisted_installer_controller.(*controller).waitAndUpdateNodesStatus" file="/remote-source/app/src/assisted_installer_controller/assisted_installer_controller.go:255" request_id=6258e5a2-4e78-4148-a913-45d704a0fa1d

time="2022-09-13T19:04:05Z" level=info msg="Found new ready node ocp-2.cluster1.kpsalerno.us.ibm.com with inventory id 2da64d56-5057-78c6-ea6e-bf74a783bd79, kubernetes id 2da64d56-5057-78c6-ea6e-bf74a783bd79, updating its status to Done" func="github.com/openshift/assisted-installer/src/assisted_installer_controller.(*controller).waitAndUpdateNodesStatus" file="/remote-source/app/src/assisted_installer_controller/assisted_installer_controller.go:255" request_id=49e4e63f-cf4f-4b9f-b1f3-923c473c09dd

 

 

Description of problem:

The cluster-dns-operator does not reconcile the openshift-dns namespace, which has been exposed as an issue in 4.12 due to the requirement for the namespace to have pod-security labels.

If a cluster has been incrementally updated from a version less than or equal to 4.9, the openshift-dns namespace will most likely not contain the required pod-security labels since the namespace was statically created when the cluster was installed with old namespace configuration.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always if cluster originally installed with v4.9 or less

Steps to Reproduce:

1. Install v4.9
2. Upgrade to v4.12 (incrementally if required for upgrade path)
3. openshift-dns namespace will be missing pod-security labels

Actual results:

"oc get ns openshift-dns -o yaml" will show missing pod-security labels: 

apiVersion: v1
kind: Namespace
metadata:
  annotations:
    openshift.io/node-selector: ""
    openshift.io/sa.scc.mcs: s0:c15,c0
    openshift.io/sa.scc.supplemental-groups: 1000210000/10000
    openshift.io/sa.scc.uid-range: 1000210000/10000
  creationTimestamp: "2020-05-21T19:36:15Z"
  labels:
    kubernetes.io/metadata.name: openshift-dns
    olm.operatorgroup.uid/3d42c0c1-01cd-4c55-bf88-864f041c7e7a: ""
    openshift.io/cluster-monitoring: "true"
    openshift.io/run-level: "0"
  name: openshift-dns
  resourceVersion: "3127555382"
  uid: 0fb4571e-952f-4bea-bc45-461beec54369
spec:
  finalizers:
  - kubernetes

Expected results:

pod-security labels should exist:
 
 labels:
    kubernetes.io/metadata.name: openshift-dns
    olm.operatorgroup.uid/3d42c0c1-01cd-4c55-bf88-864f041c7e7a: ""
    openshift.io/cluster-monitoring: "true"
    openshift.io/run-level: "0"
    pod-security.kubernetes.io/audit: privileged
    pod-security.kubernetes.io/enforce: privileged
    pod-security.kubernetes.io/warn: privileged

Additional info:

Issue found in CI during upgrade

https://coreos.slack.com/archives/C03G7REB4JV/p1663676443155839 

Tracker issue for bootimage bump in 4.12. This issue should block issues which need a bootimage bump to fix.

The previous bump was OCPBUGS-1941.

Clone of https://issues.redhat.com/browse/OCPBUGSM-44162.

Cannot use the original as the bot won't accept a security bug:

When the change merges, the Bugzilla associated with the CVE must be set to MODIFIED. Since the DPTP bugzilla bot is not permitted to scan bugs with the SECURITY group in Bugzilla, The REP will not be able to use the bot's public functionality of moving their bug to MODIFIED.

https://docs.google.com/document/d/1KuenDafC3Ukw19jY55tkVeH8nNVVAi8TEAfqynoVfzY/edit#heading=h.ikdk6suc575k

Description of problem:

documentationBaseURL still points to 4.10

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-08-31-101631

How reproducible:

Always

Steps to Reproduce:

1.Check documentationBaseURL on 4.12 cluster: 
# oc get configmap console-config -n openshift-console -o yaml | grep documentationBaseURL
      documentationBaseURL: https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/

2.
3.

Actual results:

1.documentationBaseURL is still pointing to 4.11

Expected results:

1.documentationBaseURL should point to 4.12

Additional info:

 

This is a clone of issue OCPBUGS-8342. The following is the description of the original issue:

This is a clone of issue OCPBUGS-8258. The following is the description of the original issue:

Invoking 'create cluster-manifests' fails when imageContentSources is missing in install-config yaml:

$ openshift-install agent create cluster-manifests
INFO Consuming Install Config from target directory
FATAL failed to write asset (Mirror Registries Config) to disk: failed to write file: open .: is a directory

install-config.yaml:

apiVersion: v1alpha1
metadata:
  name: appliance
rendezvousIP: 192.168.122.116
hosts:
  - hostname: sno
    installerArgs: '["--save-partlabel", "agent*", "--save-partlabel", "rhcos-*"]'
    interfaces:
     - name: enp1s0
       macAddress: 52:54:00:e7:05:72
    networkConfig:
      interfaces:
        - name: enp1s0
          type: ethernet
          state: up
          mac-address: 52:54:00:e7:05:72
          ipv4:
            enabled: true
            dhcp: true 

Description of problem:

The origin issue is from SDB-3484. When a customer wants to update its pull-secret, we find that sometimes the insight operator does not execute the cluster transfer process with the message 'no available accepted cluster transfer'. The root cause is that the insight operator does the cluster transfer process per 24 hours, and the telemetry does the registration process per 24 hours, on the ams side, both the two call /cluster_registration do the same process, so it means the telemetry will complete the cluster transfer before the insight operator. 

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. Create two OCP clusters.
2. Create a PSR that will help create two 'pending' CTs. The pending CTs will be accepted after ~6 hours.
3. Wait for ~24 hours, check the PSR, and check the logs in IO, and also check the pull-secrets in the clusters.

Actual results:

The PSR is completed, but there is no successfully transfer logs in IO, and the pull-secrets in the clusters are not updated. 

Expected results:

The transfer process is executed successfully, and the pull-secrets are updated on the clusters.

Additional info:


This is a clone of issue OCPBUGS-13170. The following is the description of the original issue:

This is a clone of issue OCPBUGS-12971. The following is the description of the original issue:

Description of problem:

hybrid-overlay on Windows nodes ignores existing non-persistent routes when creating the new vNIC. This becomes an issue especially on AWS where non-persistent routes are used for the local metadata server which is in turn used by the kubelet.
How reproducible:{code:none}
Always on Windows Server 2022 instances on AWS

Steps to Reproduce:

1. Bring up an hybrid-ovn OCP cluster on AWS
2. Add a Windows Server 2022 Machine or BYOH instance

Actual results:

The Windows Server 2022 node goes to NotReady

Expected results:

The Windows Server 2022 node goes to Ready

Additional info:

While this problem shows up only on AWS, it can be an issue on other providers if customers are depending on non-persistent routes on Windows nodes in general.

Description of problem:

release-4.12 of openshift/cloud-provider-openstack is missing some commits that were backported in upstream project into the release-1.25 branch.
We should import them in our downstream fork.

Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


This is a clone of issue OCPBUGS-2500. The following is the description of the original issue:

Description of problem:

When the Ux switches to the Dev console the topology is always blank in a Project that has a large number of components.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always occurs

Steps to Reproduce:

1.Create a project with at least 12 components (Apps, Operators, knative Brokers)
2. Go to the Administrator Viewpoint
3. Switch to Developer Viewpoint/Topology
4. No components displayed
5. Click on 'fit to screen'
6. All components appear

Actual results:

Topology renders with all controls but no components visible (see screenshot 1)

Expected results:

All components should be visible

Additional info:

 

Description of problem:

OLM has a dependency on openshift/cluster-policy-controller. This project had dependencies with v0.0.0 versions, which due to a bug in ART was causing issues building the olm image. To fix this, we have to update the dependencies in the cluster-policy-controller project to point to actual versions.

This was already done:
 * https://github.com/openshift/cluster-policy-controller/pull/103
 * https://github.com/openshift/cluster-policy-controller/pull/101

And these changes already made it to 4.14 and 4.13 branches of the cluster-policy-controller.

The backport to 4.12 is: https://github.com/openshift/cluster-policy-controller/pull/102

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-10647. The following is the description of the original issue:

Description of problem:

Cluster Network Operator managed component multus-admission-controller does not conform to Hypershift control plane expectations.

When CNO is managed by Hypershift, multus-admission-controller must run with non-root security context. If Hypershift runs control plane on kubernetes (as opposed to Openshift) management cluster, it adds pod or container security context to most deployments with runAsUser clause inside.

In Hypershift CPO, the security context of deployment containers, including CNO, is set when it detects that SCC's are not available, see https://github.com/openshift/hypershift/blob/9d04882e2e6896d5f9e04551331ecd2129355ecd/support/config/deployment.go#L96-L100. In such a case CNO should do the same, set security context for its managed deployment multus-admission-controller to meet Hypershift standard.

 

How reproducible:

Always

Steps to Reproduce:

1.Create OCP cluster using Hypershift using Kube management cluster
2.Check pod security context of multus-admission-controller

Actual results:

no pod security context is set

Expected results:

pod security context is set with runAsUser: xxxx

Additional info:

This is the highest priority item from https://issues.redhat.com/browse/OCPBUGS-7942 and it needs to be fixed ASAP as it is a security issue preventing IBM from releasing Hypershift-managed Openshift service.

Description of problem:

Installer fails due to Neutron policy error when creating Openstack servers for OCP master nodes.

$ oc get machines -A
NAMESPACE               NAME                          PHASE          TYPE   REGION   ZONE   AGE
openshift-machine-api   ostest-kwtf8-master-0         Running                               23h
openshift-machine-api   ostest-kwtf8-master-1         Running                               23h
openshift-machine-api   ostest-kwtf8-master-2         Running                               23h
openshift-machine-api   ostest-kwtf8-worker-0-g7nrw   Provisioning                          23h
openshift-machine-api   ostest-kwtf8-worker-0-lrkvb   Provisioning                          23h
openshift-machine-api   ostest-kwtf8-worker-0-vwrsk   Provisioning                          23h

$ oc -n openshift-machine-api logs machine-api-controllers-7454f5d65b-8fqx2 -c machine-controller
[...]
E1018 10:51:49.355143       1 controller.go:317] controller/machine_controller "msg"="Reconciler error" "error"="error creating Openstack instance: Failed to create port err: Request forbidden: [POST https://overcloud.redhat.local:13696/v2.0/ports], error message: {\"NeutronError\": {\"type\": \"PolicyNotAuthorized\", \"message\": \"(rule:create_port and (rule:create_port:allowed_address_pairs and (rule:create_port:allowed_address_pairs:ip_address and rule:create_port:allowed_address_pairs:ip_address))) is disallowed by policy\", \"detail\": \"\"}}" "name"="ostest-kwtf8-worker-0-lrkvb" "namespace"="openshift-machine-api"

Version-Release number of selected component (if applicable):

4.10.0-0.nightly-2022-10-14-023020

How reproducible:

Always

Steps to Reproduce:

1. Install 4.10 within provider networks (in primary or secondary interface)

Actual results:

Installation failure:
4.10.0-0.nightly-2022-10-14-023020: some cluster operators have not yet rolled out

Expected results:

Successful installation

Additional info:

Please find must-gather for installation on primary interface link here and for installation on secondary interface link here.

 

This is a clone of issue OCPBUGS-10427. The following is the description of the original issue:

This is a clone of issue OCPBUGS-9969. The following is the description of the original issue:

Description of problem:

OCP cluster born on 4.1 fails to scale-up node due to older podman version 1.0.2 present in 4.1 bootimage. This was observed while testing bug https://issues.redhat.com/browse/OCPBUGS-7559?focusedCommentId=21889975&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-21889975

Journal log:
- Unit machine-config-daemon-update-rpmostree-via-container.service has finished starting up.
--
-- The start-up result is RESULT.
Mar 10 10:41:29 ip-10-0-218-217 podman[18103]: flag provided but not defined: -authfile
Mar 10 10:41:29 ip-10-0-218-217 podman[18103]: See 'podman run --help'.
Mar 10 10:41:29 ip-10-0-218-217 systemd[1]: machine-config-daemon-update-rpmostree-via-container.service: Main process exited, code=exited, status=125/n/a
Mar 10 10:41:29 ip-10-0-218-217 systemd[1]: machine-config-daemon-update-rpmostree-via-container.service: Failed with result 'exit-code'.
Mar 10 10:41:29 ip-10-0-218-217 systemd[1]: machine-config-daemon-update-rpmostree-via-container.service: Consumed 24ms CPU time

Version-Release number of selected component (if applicable):

OCP 4.12 and later

Steps to Reproduce:

1.Upgrade a 4.1 based cluster to 4.12 or later version
2. Try to Scale up node
3. Node will fail to join

 

Additional info:  https://issues.redhat.com/browse/OCPBUGS-7559?focusedCommentId=21890647&page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel#comment-21890647

Description of problem:

Event souces are not shown in topology

Version-Release number of selected component (if applicable):

Have verified it on 4.12.0-0.nightly-2022-09-20-095559

How reproducible:

 

Steps to Reproduce:

1. Install Serverless operator
2. Create CR for knative-serving and knative-eventing respectively
3. Create/select a ns -> go to dev console -> add -> event souce
4. Create any event source

 

 

Actual results:

Can't see created resouoce(Event source) in topology

Expected results:

Should be able to see created resoouce on topology

Additional info:

 

Description of problem:

4.12 tech-preview jobs are suffering:

$ w3m -dump -cols 200 'https://search.ci.openshift.org/?search=event+happened.*no+matches+for+kind.*InsightsDataGather&maxAge=48h&type=junit' | grep 'failures match' | sort
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview-serial (all) - 10 runs, 100% failed, 90% of failures match = 90% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-azure-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-azure-sdn-techpreview-serial (all) - 10 runs, 100% failed, 90% of failures match = 90% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-gcp-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-gcp-sdn-techpreview-serial (all) - 10 runs, 100% failed, 100% of failures match = 100% impact

with runs like this failing:

: [sig-arch] events should not repeat pathologically expand_less	0s
{  1 events happened too frequently

event happened 138 times, something is wrong: ns/default namespace/default - reason/Unable to find REST mapping for %s/%s: %w InsightsDataGather.config.openshift.io%!(EXTRA string=v1, *meta.NoKindMatchError=no matches for kind "InsightsDataGather" in version "config.openshift.io/v1")}

based on events like:

$ curl -s https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview/1597393851226525696/artifacts/e2e-aws-sdn-techpreview/gather-extra/artifacts/events.json | jq -r '.items[] | select(.metadata.namespace == "default" and (.message | contains("InsightsDataGather")))'
{
  "apiVersion": "v1",
  "count": 145,
  "eventTime": null,
  "firstTimestamp": "2022-11-29T01:32:16Z",
  "involvedObject": {
    "apiVersion": "v1",
    "kind": "Namespace",
    "name": "default",
    "namespace": "default"
  },
  "kind": "Event",
  "lastTimestamp": "2022-11-29T02:19:36Z",
  "message": "InsightsDataGather.config.openshift.io%!(EXTRA string=v1, *meta.NoKindMatchError=no matches for kind \"InsightsDataGather\" in version \"config.openshift.io/v1\")",
  "metadata": {
    "creationTimestamp": "2022-11-29T01:32:16Z",
    "name": "default.172bea26177786ae",
    "namespace": "default",
    "resourceVersion": "237357",
    "uid": "187cf3a0-cf4b-4cd1-ae72-51b5d77b7e73"
  },
  "reason": "Unable to find REST mapping for %s/%s: %w",
  "reportingComponent": "",
  "reportingInstance": "",
  "source": {
    "component": "run-resourcewatch-config-observer-controller-configobservercontroller"
  },
  "type": "Warning"
}

Version-Release number of selected component (if applicable):

4.12 tech-preview jobs are impacted.

How reproducible:

100% for some job flavors, per the search CI output above.

Steps to Reproduce:

1. Look at test results for any of the impacted job flavors.

Actual results:

Lots of NoKindMatchError events for v1 InsightsDataGather (it's only v1alpha1).

Expected results:

Passing test-cases.

Additional info:

The problematic REST-mapping client was removed from 4.13/dev as part of origin#27596.

This is a clone of issue OCPBUGS-4913. The following is the description of the original issue:

Description of problem:

Currently the Terraform code waits for 45 seconds, but anecdotal data suggest we should actually wait for 3 minutes in order to avoid "failures" due to occasional slow boots of a new VM in PowerVS.

Version-Release number of selected component (if applicable):

 

How reproducible:

often enough

Steps to Reproduce:

1. run IPI installer against PowerVS
2. look for "empty tuple" in the error message when it fails to reach `bootstrap-complete`
3.

Actual results:

 

Expected results:

VMs to always have IP address assigned by DHCP after a certain wait

Additional info:

The change has already been merged into master/4.13, but 4.12 also needs this for planned PowerVS IPI GA on the z-stream.

This is a clone of issue OCPBUGS-12729. The following is the description of the original issue:

Description of problem:

This came out of the investigation of https://issues.redhat.com/browse/OCPBUGS-11691 . The nested node configs used to support dual stack VIPs do not correctly respect the EnableUnicast setting. This is causing issues on EUS upgrades where the unicast migration cannot happen until all nodes are on 4.12. This is blocking both the workaround and the eventual proper fix.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. Deploy 4.11 with unicast explicitly disabled (via MCO patch)
2. Write /etc/keepalived/monitor-user.conf to suppress unicast migration
3. Upgrade to 4.12

Actual results:

Nodes come up in unicast mode

Expected results:

Nodes remain in multicast mode until monitor-user.conf is removed

Additional info:

 

This is a clone of issue OCPBUGS-4490. The following is the description of the original issue:

Description of problem:

When hypershift HostedCluster has endpointAccess: Private, the csi-snapshot-controller is in CrashLoopBackoff because the guest APIServer url in the admin-kubeconfig isn't reachable in Private mode.

Version-Release number of selected component (if applicable):

4.13

How reproducible:

Always

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-5151. The following is the description of the original issue:

Description of problem:

Cx is not able to install new cluster OCP BM IPI. During the bootstrapping the provisioning interfaces from master node not getting ipv4 dhcp ip address from bootstrap dhcp server on OCP IPI BareMetal install 

Please refer to following BUG --> https://issues.redhat.com/browse/OCPBUGS-872  The problem was solved by applying rd.net.timeout.carrier=30 to the kernel parameters of compute nodes via cluster-baremetal operator. The fix also need to be apply to the control-plane. 

  ref:// https://github.com/openshift/cluster-baremetal-operator/pull/286/files

 

Version-Release number of selected component (if applicable):

 

How reproducible:

Perform OCP 4.10.16 IPI BareMetal install.

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

Customer should be able to install the cluster without any issue.

Additional info:

 

This is a clone of issue OCPBUGS-5988. The following is the description of the original issue:

Description of problem:

Etcd operator is in degraded state as one of the masters can't connect.
Master that fails to connect was previously bootstrap and pivoted as part of assisted-installer installation to master.

Etcd log:
2023-01-17T23:09:26.523562312Z 28dcf1b0a44481b0, started, test-infra-cluster-04bf4418-master-1, https://192.168.127.11:2380, https://192.168.127.11:2379, false
2023-01-17T23:09:26.523562312Z 30600b5b86e23c8e, started, etcd-bootstrap, https://192.168.127.12:2380, https://192.168.127.12:2379, false
2023-01-17T23:09:26.523562312Z 73f00626fee34a87, started, test-infra-cluster-04bf4418-master-0, https://192.168.127.10:2380, https://192.168.127.10:2379, false
2023-01-17T23:09:26.541214220Z #### attempt 0
2023-01-17T23:09:26.547811132Z       member={name="test-infra-cluster-04bf4418-master-1", peerURLs=[https://192.168.127.11:2380}, clientURLs=[https://192.168.127.11:2379]
2023-01-17T23:09:26.547811132Z       member={name="etcd-bootstrap", peerURLs=[https://192.168.127.12:2380}, clientURLs=[https://192.168.127.12:2379]
2023-01-17T23:09:26.547811132Z       member={name="test-infra-cluster-04bf4418-master-0", peerURLs=[https://192.168.127.10:2380}, clientURLs=[https://192.168.127.10:2379]
2023-01-17T23:09:26.547811132Z       target={name="etcd-bootstrap", peerURLs=[https://192.168.127.12:2380}, clientURLs=[https://192.168.127.12:2379]
2023-01-17T23:09:26.547846508Z member "https://192.168.127.12:2380" dataDir has been destroyed and must be removed from the cluster

There are couple of problems that we see:
1. For unknown reason etcd operator BootstrapTeardownController fails to start as it fails to see "openshift-etcd" namespace though by the logs it is there.
2023-01-17T21:39:43.323928903Z E0117 21:39:43.323917       1 base_controller.go:272] BootstrapTeardownController reconciliation failed: failed to get bootstrap scaling strategy: failed to get openshift-etcd names

2. DelayStrategy code was change by https://github.com/openshift/cluster-etcd-operator/pull/964/files and currently it requires 3 healthy members in order to remove. It can create issues as etcd and cluster-bootstrap(bootkube) are not synchronized and nothing is actually blocking bootstrap on stop etcd and block remove of bootstrap etcd.(at least how i understand the flow)


Version-Release number of selected component (if applicable):

 

How reproducible:

It is race as far as i understand but reproduced pretty much in our CI by installing 4.12 nightlies

Steps to Reproduce:

1.
2.
3.

Actual results:

Etcd is degrade cause third joined master etcd can't start

Expected results:

Etcd is healthy

Additional info:

 

When installing OCP cluster with worker nodes VM type specified as high performance, some of the configuration settings of said VMs do not match the configuration settings a high performance VM should have.

Specific configurations that do not match are described in subtasks.

 

Default configuration settings of high performance VMs:
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/virtual_machine_management_guide/index?extIdCarryOver=true&sc_cid=701f2000001Css5AAC#Configuring_High_Performance_Virtual_Machines_Templates_and_Pools

When installing OCP cluster with worker nodes VM type specified as high performance, manual and automatic migration is enabled in the said VMs.
However, high performance worker VMs are created with default values of the engine, so only manual migration should be enabled.

Default configuration settings of high performance VMs:
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/virtual_machine_management_guide/index?extIdCarryOver=true&sc_cid=701f2000001Css5AAC#Configuring_High_Performance_Virtual_Machines_Templates_and_Pools

How reproducible: 100%

How to reproduce:

1. Create install-config.yaml with a vmType field and set it to high performance, i.e.:

apiVersion: v1
baseDomain: basedomain.com
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    ovirt:
      affinityGroupsNames: []
      vmType: high_performance
  replicas: 2
...

2. Run installation

./openshift-install create cluster --dir=resources --log-level=debug

3. Check worker VM's configuration in the RHV webconsole.

Expected:
Only manual migration (under Host) should be enabled.

Actual:
Manual and automatic migration is enabled.

This is a clone of issue OCPBUGS-3172. The following is the description of the original issue:

Customer is trying to install the Logging operator, which appears to attempt to install a dynamic plugin. The operator installation fails in the console because permissions aren't available to "patch resource consoles".

We shouldn't block operator installation if permission issues prevent dynamic plugin installation.

This is an OSD cluster, presumably for a customer with "cluster-admin", although it may be a paired down permission set called "dedicated-admin".

See https://docs.google.com/document/d/1hYS-bm6aH7S6z7We76dn9XOFcpi9CGYcGoJys514YSY/edit for permissions investigation work on OSD

This is a clone of issue OCPBUGS-3235. The following is the description of the original issue:

Description of problem:

Frequently we see the loading state of the topology view, even when there aren't many resources in the project.

Including an example

Prerequisites (if any, like setup, operators/versions):

Steps to Reproduce

  1. load topology
  2. if it loads successfully, keep trying  until it fails to load

Actual results:

topology will sometimes hang with the loading indicator showing indefinitely

Expected results:

topology should load consistently without fail

Reproducibility (Always/Intermittent/Only Once):

intermittent

Build Details:

4.9

Additional info:

Description of problem:

Have 6 runs of techpreview jobs where the jobs fails due to the MCO:

 

 

{Operator degraded (RequiredPoolsFailed): Unable to apply 4.12.0-0.ci.test-2022-09-21-183414-ci-op-qd6plyhc-latest: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool master is not ready, retrying. Status: (pool degraded: true total: 3, ready 0, updated: 0, unavailable: 3)] Operator degraded (RequiredPoolsFailed): Unable to apply 4.12.0-0.ci.test-2022-09-21-183414-ci-op-qd6plyhc-latest: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool master is not ready, retrying. Status: (pool degraded: true total: 3, ready 0, updated: 0, unavailable: 3)]}
 

 

looking at the MCD logs the master seems to go degraded in bootstrap due to the rendered config not being found?

 
I0921 18:49:47.091804 8171 daemon.go:444] Node ci-op-qd6plyhc-6dd9a-bfmjd-master-1 is part of the control plane I0921 18:49:49.213556 8171 node.go:24] No machineconfiguration.openshift.io/currentConfig annotation on node ci-op-qd6plyhc-6dd9a-bfmjd-master-1: map[csi.volume.kubernetes.io/nodeid:
{"pd.csi.storage.gke.io":"projects/openshift-gce-devel-ci-2/zones/us-central1-b/instances/ci-op-qd6plyhc-6dd9a-bfmjd-master-1"}
volumes.kubernetes.io/controller-managed-attach-detach:true], in cluster bootstrap, loading initial node annotation from /etc/machine-config-daemon/node-annotations.json I0921 18:49:49.215186 8171 node.go:45] Setting initial node config: rendered-master-2dde32327e4e5d15092fccbac1dcec49 I0921 18:49:49.253706 8171 daemon.go:1184] In bootstrap mode E0921 18:49:49.254046 8171 writer.go:200] Marking Degraded due to: machineconfig.machineconfiguration.openshift.io "rendered-master-2dde32327e4e5d15092fccbac1dcec49" not found I0921 18:49:51.232610 8171 daemon.go:499] Transitioned from state: Done -> Degraded I0921 18:49:51.249618 8171 daemon.go:1184] In bootstrap mode E0921 18:49:51.249906 8171 writer.go:200] Marking Degraded due to: machineconfig.machineconfiguration.openshift.io "rendered-master-2dde32327e4e5d15092fccbac1dcec49" not found

However looking at controller a rendered-config was generated correctly but it's not the missing config from above:

I0921 18:54:06.736984 1 render_controller.go:506] Generated machineconfig rendered-master-acc8491aafab8ef511a40b76372325ee from 6 configs: [{MachineConfig 00-master machineconfiguration.openshift.io/v1 } {MachineConfig 01-master-container-runtime machineconfiguration.openshift.io/v1 } {MachineConfig 01-master-kubelet machineconfiguration.openshift.io/v1 } {MachineConfig 98-master-generated-kubelet machineconfiguration.openshift.io/v1 } {MachineConfig 99-master-generated-registries machineconfiguration.openshift.io/v1 } {MachineConfig 99-master-ssh machineconfiguration.openshift.io/v1 }] I0921 18:54:06.737226 1 event.go:285] Event(v1.ObjectReference{Kind:"MachineConfigPool", Namespace:"", Name:"master", UID:"b2084ca6-4b33-46bf-b83b-9e98010ff085", APIVersion:"machineconfiguration.openshift.io/v1", ResourceVersion:"5648", FieldPath:""}): type: 'Normal' reason: 'RenderedConfigGenerated' rendered-master-acc8491aafab8ef511a40b76372325ee successfully generated (release version: 4.12.0-0.ci.test-2022-09-21-183220-ci-op-9ksj7d7g-latest, controller version: a627415c240b4c7dd2f9e90f659690d9c0f623f3) I0921 18:54:06.742053 1 render_controller.go:532] Pool master: now targeting: rendered-master-acc8491aafab8ef511a40b76372325ee

 

So far I see this in the following techpreview jobs:
GCP techpreview
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-gcp-sdn-techpreview/1572638837954318336
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-gcp-sdn-techpreview-serial/1572638838793179136

Vsphere techpreview
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-nightly-4.12-e2e-vsphere-ovn-techpreview/1572638854794448896
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-nightly-4.12-e2e-vsphere-ovn-techpreview-serial/1572638855574589440

AWS Techpreview:
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-aws-sdn-techpreview/1572638828672323584
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-aws-sdn-techpreview-serial/1572638829217583104

 

The above jobs affect the k8s 1.25 bump and are blocking the job.

There are also other occurances not in our PR:
https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/openshift_release/31965/rehearse-31965-pull-ci-openshift-openshift-controller-manager-master-openshift-e2e-aws-builds-techpreview/1572581504297472000

https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/openshift_builder/307/pull-ci-openshift-builder-master-e2e-aws-builds-techpreview/1572599746021822464

 

Also see a quick search:
https://search.ci.openshift.org/?search=timed+out+waiting+for+the+condition%2C+error+pool+master+is+not+ready&maxAge=48h&context=1&type=bug%2Bissue%2Bjunit&name=&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

Did something change that would affect tech preview jobs?

Also note, this seems like a new failure. I have some of these jobs passing in the last ~ 8 days.

Description of problem:

The SQL-based index image created by old opm failed to run in 4.12 even if added the `privileged` permission to the namespace.

 

MacBook-Pro:~ jianzhang$ oc get pods
NAME                   READY   STATUS             RESTARTS     AGE
jian-operators-4g5ln   0/1     CrashLoopBackOff   1 (2s ago)   11s
MacBook-Pro:~ jianzhang$ oc logs jian-operators-4g5ln 
Error: open /etc/nsswitch.conf: permission denied 

 

PS: the SQL-based index created by the new opm version doesn't have this issue.

 

opm version
Version: version.Version{OpmVersion:"e41024eb3", GitCommit:"e41024eb37c721bc43e8b3df226dd30c0589aee7", BuildDate:"2022-08-16T01:50:17Z", GoOs:"darwin", GoArch:"amd64"} 

 

 

Version-Release number of selected component (if applicable):

OCP 4.12

 

MacBook-Pro:~ jianzhang$ oc get clusterversion NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS version   4.12.0-0.nightly-2022-08-15-150248   True        False         3h25m   Cluster version is 4.12.0-0.nightly-2022-08-15-150248 

 

How reproducible:

always

Steps to Reproduce:
1. Deploy OCP 4.12

2, Deploy a CatalogSource in the `openshift-marketplace` namespace.

 

MacBook-Pro:~ jianzhang$ oc get ns openshift-marketplace -o yaml
apiVersion: v1
kind: Namespace
metadata:
  annotations:
    capability.openshift.io/name: marketplace
    include.release.openshift.io/ibm-cloud-managed: "true"
    include.release.openshift.io/self-managed-high-availability: "true"
    include.release.openshift.io/single-node-developer: "true"
    openshift.io/node-selector: ""
    openshift.io/sa.scc.mcs: s0:c16,c10
    openshift.io/sa.scc.supplemental-groups: 1000260000/10000
    openshift.io/sa.scc.uid-range: 1000260000/10000
    workload.openshift.io/allowed: management
  creationTimestamp: "2022-08-15T23:15:27Z"
  labels:
    kubernetes.io/metadata.name: openshift-marketplace
    olm.operatorgroup.uid/1b776321-2714-4c1f-95ba-2ddff49c4efe: ""
    openshift.io/cluster-monitoring: "true"
    pod-security.kubernetes.io/audit: baseline
    pod-security.kubernetes.io/enforce: baseline
    pod-security.kubernetes.io/warn: baseline
  name: openshift-marketplace
  ownerReferences:
  - apiVersion: config.openshift.io/v1
    kind: ClusterVersion
    name: version
    uid: cd81594b-4f6c-46d6-9369-75deef542ec8
  resourceVersion: "8617"
  uid: 1c35352e-3636-4f2b-a3b1-c84ebc6681e0
spec:
  finalizers:
  - kubernetes
status:
  phase: Active 

3, Check the CatalogSource pod status, crashed.

 

 


MacBook-Pro:~ jianzhang$ oc get catalogsource -n openshift-marketplace jian-operators -o yaml
apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  creationTimestamp: "2022-08-16T02:24:20Z"
  generation: 1
  name: jian-operators
  namespace: openshift-marketplace
  resourceVersion: "106145"
  uid: 6a75ecc9-7b88-4411-bcf5-e34618f9b3cd
spec:
  displayName: Jian Operators
  image: quay.io/olmqe/etcd-index:v1
  priority: -100
  publisher: Jian
  sourceType: grpc
  updateStrategy:
    registryPoll:
      interval: 10m0s
status:
  connectionState:
    address: jian-operators.openshift-marketplace.svc:50051
    lastConnect: "2022-08-16T03:12:28Z"
    lastObservedState: TRANSIENT_FAILURE
  latestImageRegistryPoll: "2022-08-16T02:34:21Z"
  registryService:
    createdAt: "2022-08-16T02:24:20Z"
    port: "50051"
    protocol: grpc
    serviceName: jian-operators
    serviceNamespace: openshift-marketplace

MacBook-Pro:~ jianzhang$ oc get pods -n openshift-marketplace
NAME                                                              READY   STATUS             RESTARTS       AGE
28bb83ea022e9728d25570ab0adbe09a31d6a0a606917488e0ddb00f925mnfw   0/1     Completed          0              3h23m
7049ea48beb27a712fa506b76ad672be201ce5d3a6a93d627a0091e0fesvdlj   0/1     Completed          0              3h23m
certified-operators-ftt2n                                         1/1     Running            0              3h49m
community-operators-27dx9                                         1/1     Running            0              3h49m
jian-operators-5zq7d                                              0/1     CrashLoopBackOff   12 (71s ago)   38m
jian-operators-gpg4v                                              0/1     CrashLoopBackOff   14 (57s ago)   48m
marketplace-operator-9c8496b58-2jfmv                              1/1     Running            0              3h56m
qe-app-registry-rqrrv                                             1/1     Running            0              141m
redhat-marketplace-s6zrj                                          1/1     Running            0              3h49m
redhat-operators-54cqr                                            1/1     Running            0              3h49m

MacBook-Pro:~ jianzhang$ oc -n openshift-marketplace logs jian-operators-gpg4v 
Error: open /etc/nsswitch.conf: permission denied
Usage:
  opm registry serve [flags]


Flags:
  -d, --database string          relative path to sqlite db (default "bundles.db")
      --debug                    enable debug logging
  -h, --help                     help for serve
  -p, --port string              port number to serve on (default "50051")
      --skip-migrate             do  not attempt to migrate to the latest db revision when starting
  -t, --termination-log string   path to a container termination log file (default "/dev/termination-log")
      --timeout-seconds string   Timeout in seconds. This flag will be removed later. (default "infinite")


Global Flags:
      --skip-tls   skip TLS certificate verification for container image registries while pulling bundles or index 

 

4. Create a namespace with the `privileged` permission.

 

MacBook-Pro:~ jianzhang$ oc get ns debug -o yaml
apiVersion: v1
kind: Namespace
metadata:
  annotations:
    openshift.io/sa.scc.mcs: s0:c30,c10
    openshift.io/sa.scc.supplemental-groups: 1000890000/10000
    openshift.io/sa.scc.uid-range: 1000890000/10000
  creationTimestamp: "2022-08-16T02:46:41Z"
  labels:
    kubernetes.io/metadata.name: debug
    pod-security.kubernetes.io/audit: privileged
    pod-security.kubernetes.io/enforce: privileged
    pod-security.kubernetes.io/warn: privileged
    security.openshift.io/scc.podSecurityLabelSync: "false"
  name: debug
  resourceVersion: "95718"
  uid: bdf93839-6c42-4365-a65c-d9c0b9fe0504
spec:
  finalizers:
  - kubernetes
status:
  phase: Active 

 
5. Deploy a CatalogSource as above step 2. Still crashed.

 

 

MacBook-Pro:~ jianzhang$ oc get pods -n debug
NAME                   READY   STATUS             RESTARTS        AGE
jian-operators-4g5ln   0/1     CrashLoopBackOff   10 (114s ago)   28m
jian-operators-wn766   0/1     CrashLoopBackOff   8 (2m25s ago)   18m
MacBook-Pro:~ jianzhang$ oc -n debug logs jian-operators-wn766
Error: open /etc/nsswitch.conf: permission denied
Usage:
  opm registry serve [flags]


Flags:
  -d, --database string          relative path to sqlite db (default "bundles.db")
      --debug                    enable debug logging
  -h, --help                     help for serve
  -p, --port string              port number to serve on (default "50051")
      --skip-migrate             do  not attempt to migrate to the latest db revision when starting
  -t, --termination-log string   path to a container termination log file (default "/dev/termination-log")
      --timeout-seconds string   Timeout in seconds. This flag will be removed later. (default "infinite")


Global Flags:
      --skip-tls   skip TLS certificate verification for container image registries while pulling bundles or index 

 

 

Actual results:

The sql-based index image created by the old opm version cannot be run.

 

MacBook-Pro:~ jianzhang$ oc -n debug logs jian-operators-wn766 Error: open /etc/nsswitch.conf: permission denied 

 

 

Expected results:

The old SQL-based index image runs well. Or we have a workaround for it.

 

Additional info:

I changed another old sql-based image and have a try, get another permission issue.

 

MacBook-Pro:~ jianzhang$ oc get catalogsource
NAME             DISPLAY          TYPE   PUBLISHER   AGE
jian-operators   Jian Operators   grpc   Jian        37m
xia-operators    Xia Operators    grpc   Xia         101s
MacBook-Pro:~ jianzhang$ oc get catalogsource xia-operators -o yaml
apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  creationTimestamp: "2022-08-16T03:22:38Z"
  generation: 1
  name: xia-operators
  namespace: debug
  resourceVersion: "110629"
  uid: 8be42e68-43be-4fd4-9b67-c74edc5e6353
spec:
  displayName: Xia Operators
  image: quay.io/olmqe/ditto-index:test-xzha-1
  priority: -100
  publisher: Xia
  sourceType: grpc
  updateStrategy:
    registryPoll:
      interval: 10m0s
status:
  connectionState:
    address: xia-operators.debug.svc:50051
    lastConnect: "2022-08-16T03:24:18Z"
    lastObservedState: CONNECTING
  registryService:
    createdAt: "2022-08-16T03:22:38Z"
    port: "50051"
    protocol: grpc
    serviceName: xia-operators
    serviceNamespace: debug

MacBook-Pro:~ jianzhang$ oc project
Using project "debug" on server "https://api.qe-daily-412-0816.ibmcloud.qe.devcluster.openshift.com:6443".
MacBook-Pro:~ jianzhang$ oc get pods
NAME                   READY   STATUS             RESTARTS         AGE
jian-operators-4g5ln   0/1     CrashLoopBackOff   11 (3m41s ago)   35m
jian-operators-wn766   0/1     CrashLoopBackOff   9 (4m13s ago)    25m
xia-operators-6wgjt    0/1     CrashLoopBackOff   1 (8s ago)       13s
MacBook-Pro:~ jianzhang$ oc logs xia-operators-6wgjt 
time="2022-08-16T03:22:43Z" level=warning msg="\x1b[1;33mDEPRECATION NOTICE:\nSqlite-based catalogs and their related subcommands are deprecated. Support for\nthem will be removed in a future release. Please migrate your catalog workflows\nto the new file-based catalog format.\x1b[0m"
Error: open ./db-609956243: permission denied
Usage:
  opm registry serve [flags]


Flags:
  -d, --database string          relative path to sqlite db (default "bundles.db")
      --debug                    enable debug logging

 

Even if that namespace is `privileged`.

MacBook-Pro:~ jianzhang$ oc get ns debug -o yaml
apiVersion: v1
kind: Namespace
metadata:
  annotations:
    openshift.io/sa.scc.mcs: s0:c30,c10
    openshift.io/sa.scc.supplemental-groups: 1000890000/10000
    openshift.io/sa.scc.uid-range: 1000890000/10000
  creationTimestamp: "2022-08-16T02:46:41Z"
  labels:
    kubernetes.io/metadata.name: debug
    pod-security.kubernetes.io/audit: privileged
    pod-security.kubernetes.io/enforce: privileged
    pod-security.kubernetes.io/warn: privileged
    security.openshift.io/scc.podSecurityLabelSync: "false"
  name: debug
  resourceVersion: "95718"
  uid: bdf93839-6c42-4365-a65c-d9c0b9fe0504
spec:
  finalizers:
  - kubernetes
status:
  phase: Active 

But, both of them work well in the 4.11 cluster. As follows,

 

MacBook-Pro:~ jianzhang$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-08-15-152346   True        False         91m     Cluster version is 4.11.0-0.nightly-2022-08-15-152346
MacBook-Pro:~ jianzhang$ oc get catalogsource
NAME                  DISPLAY               TYPE   PUBLISHER   AGE
certified-operators   Certified Operators   grpc   Red Hat     106m
community-operators   Community Operators   grpc   Red Hat     106m
jian-operators        Jian Operators        grpc   Jian        48m
redhat-marketplace    Red Hat Marketplace   grpc   Red Hat     106m
redhat-operators      Red Hat Operators     grpc   Red Hat     106m
xia-operators         Xia Operators         grpc   Xia         6s
MacBook-Pro:~ jianzhang$ oc get pods
NAME                                   READY   STATUS    RESTARTS   AGE
certified-operators-fsjc8              1/1     Running   0          107m
community-operators-9qvzt              1/1     Running   0          107m
jian-operators-n5s8c