Back to index

4.12.7

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

Epic Goal

  • Enable the migration from a storage intree driver to a CSI based driver with minimal impact to the end user, applications and cluster
  • These migrations would include, but are not limited to:
    • CSI driver for AWS EBS
    • CSI driver for GCP
    • CSI driver for Azure (file and disk)
    • CSI driver for VMware vSphere

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

We plan to build Ironic Container Images using RHEL9 as base image in OCP 4.12

This is required because the ironic components have abandoned support for CentOS Stream 8 and Python 3.6/3.7 upstream during the most recent development cycle that will produce the stable Zed release, in favor of CentOS Stream 9 and Python 3.8/3.9

More info on RHEL8 to RHEL9 transition in OCP can be found at https://docs.google.com/document/d/1N8KyDY7KmgUYA9EOtDDQolebz0qi3nhT20IOn4D-xS4

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

This is a clone of issue OCPBUGS-4950. The following is the description of the original issue:

Description of problem:

A PR bumping OLM's k8s dependencies to 1.25 wasn't merged into openshift 4.12

Version-Release number of selected component (if applicable):

openshift-4.12

How reproducible:

Always

Steps to Reproduce:

1. Check OLM's repository for k8s dependencies in the 4.12 branch

Actual results:

Has 1.24 k8s dependencies

Expected results:

Has 1.25 k8s dependencies

Additional info:

 

 

Description of problem:

In a 4.11 cluster with only openshift-samples enabled, the 4.12 introduced optional COs console and insights are installed. While upgrading to 4.12, CVO considers them to be disabled explicitly and skips reconciling them. So these COs are not upgraded to 4.12.

Installed COs cannot be disabled, so CVO is supposed to implicitly enable them.


$ oc get clusterversion -oyaml
{
  "apiVersion": "config.openshift.io/v1",
     "kind": "ClusterVersion",
     "metadata": {
         "creationTimestamp": "2022-09-30T05:02:31Z",
         "generation": 3,
         "name": "version",
         "resourceVersion": "134808",
         "uid": "bd95473f-ffda-402d-8fe3-74f852a9d6eb"
     },
     "spec": {
         "capabilities": {
             "additionalEnabledCapabilities": [
                 "openshift-samples"
             ],
             "baselineCapabilitySet": "None"
         },
         "channel": "stable-4.11",
         "clusterID": "8eda5167-a730-4b39-be1d-214a80506d34",
         "desiredUpdate": {
             "force": true,
             "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
             "version": ""
         }
     },
     "status": {
         "availableUpdates": null,
         "capabilities": {
             "enabledCapabilities": [
                 "openshift-samples"
             ],
             "knownCapabilities": [
                 "Console",
                 "Insights",
                 "Storage",
                 "baremetal",
                 "marketplace",
                 "openshift-samples"
             ]
         },
         "conditions": [
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Unable to retrieve available updates: currently reconciling cluster version 4.12.0-0.nightly-2022-09-28-204419 not found in the \"stable-4.11\" channel",
                 "reason": "VersionNotFound",
                 "status": "False",
                 "type": "RetrievedUpdates"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Capabilities match configured spec",
                 "reason": "AsExpected",
                 "status": "False",
                 "type": "ImplicitlyEnabledCapabilities"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Payload loaded version=\"4.12.0-0.nightly-2022-09-28-204419\" image=\"registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc\" architecture=\"amd64\"",
                 "reason": "PayloadLoaded",
                 "status": "True",
                 "type": "ReleaseAccepted"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:23:18Z",
                 "message": "Done applying 4.12.0-0.nightly-2022-09-28-204419",
                 "status": "True",
                 "type": "Available"
             },
             {
                 "lastTransitionTime": "2022-09-30T07:05:42Z",
                 "status": "False",
                 "type": "Failing"
             },
             {
                 "lastTransitionTime": "2022-09-30T07:41:53Z",
                 "message": "Cluster version is 4.12.0-0.nightly-2022-09-28-204419",
                 "status": "False",
                 "type": "Progressing"
             }
         ],
         "desired": {
             "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
             "version": "4.12.0-0.nightly-2022-09-28-204419"
         },
         "history": [
             {
                 "completionTime": "2022-09-30T07:41:53Z",
                 "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
                 "startedTime": "2022-09-30T06:42:01Z",
                 "state": "Completed",
                 "verified": false,
                 "version": "4.12.0-0.nightly-2022-09-28-204419"
             },
             {
                 "completionTime": "2022-09-30T05:23:18Z",
                 "image": "registry.ci.openshift.org/ocp/release@sha256:5a6f6d1bf5c752c75d7554aa927c06b5ea0880b51909e83387ee4d3bca424631",
                 "startedTime": "2022-09-30T05:02:33Z",
                 "state": "Completed",
                 "verified": false,
                 "version": "4.11.0-0.nightly-2022-09-29-191451"
             }
         ],
         "observedGeneration": 3,
         "versionHash": "CSCJ2fxM_2o="
     }
 }

$ oc get co
 NAME                                       VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      93m     
cloud-controller-manager                   4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h56m   
cloud-credential                           4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h59m   
cluster-autoscaler                         4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h53m   
config-operator                            4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
console                                    4.11.0-0.nightly-2022-09-29-191451   True        False         False      3h45m   
control-plane-machine-set                  4.12.0-0.nightly-2022-09-28-204419   True        False         False      117m    
csi-snapshot-controller                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
dns                                        4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h53m   
etcd                                       4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h52m   
image-registry                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h46m   
ingress                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      151m    
insights                                   4.11.0-0.nightly-2022-09-29-191451   True        False         False      3h48m   
kube-apiserver                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h50m   
kube-controller-manager                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h51m   
kube-scheduler                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h51m   
kube-storage-version-migrator              4.12.0-0.nightly-2022-09-28-204419   True        False         False      91m     
machine-api                                4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h50m   
machine-approver                           4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
machine-config                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h52m   
monitoring                                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h44m   
network                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h55m   
node-tuning                                4.12.0-0.nightly-2022-09-28-204419   True        False         False      113m    
openshift-apiserver                        4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h48m   
openshift-controller-manager               4.12.0-0.nightly-2022-09-28-204419   True        False         False      113m    
openshift-samples                          4.12.0-0.nightly-2022-09-28-204419   True        False         False      116m    
operator-lifecycle-manager                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
operator-lifecycle-manager-catalog         4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
operator-lifecycle-manager-packageserver   4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h48m   
service-ca                                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
storage                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-28-204419

How reproducible:

Always

Steps to Reproduce:

1. Install a 4.11 cluster with only openshift-samples enabled
2. Upgrade to 4.12
3.

Actual results:

The 4.12 introduced optional CO console and insights are not upgraded to 4.12

Expected results:

All the installed COs get upgraded

Additional info:

 

This is a clone of issue OCPBUGS-2727. The following is the description of the original issue:

Description of problem:

CVO recently introduced a new precondition RecommendedUpdate[1]. While we request an upgrade to a version which is not an available update, the precondition got UnknownUpdate and blocks the upgrade.

# oc get clusterversion/version -ojson | jq -r '.status.availableUpdates'null

# oc get clusterversion/version -ojson | jq -r '.status.conditions[]|select(.type == "ReleaseAccepted")'
{
  "lastTransitionTime": "2022-10-20T08:16:59Z",
  "message": "Preconditions failed for payload loaded version=\"4.12.0-0.nightly-multi-2022-10-18-153953\" image=\"quay.io/openshift-release-dev/ocp-release-nightly@sha256:71c1912990db7933bcda1d6914228e8b9b0d36ddba265164ee33a1bca06fe695\": Precondition \"ClusterVersionRecommendedUpdate\" failed because of \"UnknownUpdate\": RetrievedUpdates=False (VersionNotFound), so the recommended status of updating from 4.12.0-0.nightly-multi-2022-10-18-091108 to 4.12.0-0.nightly-multi-2022-10-18-153953 is unknown.",
  "reason": "PreconditionChecks",
  "status": "False",
  "type": "ReleaseAccepted"
}


[1]https://github.com/openshift/cluster-version-operator/pull/841/

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-multi-2022-10-18-091108

How reproducible:

Always

Steps to Reproduce:

1. Install a 4.12 cluster
2. Upgrade to a version which is not in the available update
# oc adm upgrade --allow-explicit-upgrade --to-image=quay.io/openshift-release-dev/ocp-release-nightly@sha256:71c1912990db7933bcda1d6914228e8b9b0d36ddba265164ee33a1bca06fe695warning: The requested upgrade image is not one of the available updates.You have used --allow-explicit-upgrade for the update to proceed anywayRequesting update to release image quay.io/openshift-release-dev/ocp-release-nightly@sha256:71c1912990db7933bcda1d6914228e8b9b0d36ddba265164ee33a1bca06fe695 

Actual results:

CVO precondition check fails and blocks upgrade

Expected results:

Upgrade proceeds

Additional info:

 

Description of problem:

Data race seen in unit tests:
https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/pr-logs/pull/openshift_ovn-kubernetes/1448/pull-ci-openshift-ovn-kubernetes-release-4.11-unit/1604898712423763968/artifacts/test/build-log.txt
 

This is a clone of issue OCPBUGS-2144. The following is the description of the original issue:

Description of problem:

Azure IPI creates boot images using the image gallery API now, it will create two image definition resources for both hyperVGeneration V1 and V2. For arm64 cluster, the architecture in image definition hyperVGeneration V1 is x64, but it should be Arm64

Version-Release number of selected component (if applicable):

./openshift-install version
./openshift-install 4.12.0-0.nightly-arm64-2022-10-07-204251
built from commit 7b739cde1e0239c77fabf7622e15025d32fc272c
release image registry.ci.openshift.org/ocp-arm64/release-arm64@sha256:d2569be4ba276d6474aea016536afbad1ce2e827b3c71ab47010617a537a8b11
release architecture arm64

How reproducible:

always

Steps to Reproduce:

1.Create arm cluster using latest arm64 nightly build 
2.Check image definition created for hyperVGeneration V1

Actual results:

The architecture field is x64.
###
$ az sig image-definition show --gallery-name ${gallery_name} --gallery-image-definition lwanazarm1008-rc8wh --resource-group ${rg} | jq -r ".architecture"
x64
The image version under this image definition is for aarch64.
###
$ az sig image-version show --gallery-name gallery_lwanazarm1008_rc8wh --gallery-image-definition lwanazarm1008-rc8wh --resource-group lwanazarm1008-rc8wh-rg --gallery-image-version 412.86.20220922 | jq -r ".storageProfile.osDiskImage.source"
{  "uri": "https://clustermuygq.blob.core.windows.net/vhd/rhcosmuygq.vhd"}
$ az storage blob show --container-name vhd --name rhcosmuygq.vhd --account-name clustermuygq --account-key $account_key | jq -r ".metadata"
{  "Source_uri": "https://rhcos.blob.core.windows.net/imagebucket/rhcos-412.86.202209220538-0-azure.aarch64.vhd"}

Expected results:

Although no VMs with HypergenV1 can be provisioned, the architecture field should be Arm64 even for hyperGenerationV1 image definitions

Additional info:

1.The architecture in image definition hyperVGeneration V2 is Arm64 and installer will use V2 by default for arm64 vm_type, so installation didn't fail by default. But we still need to make architecture consistent in V1.

2.Need to set architecture field for both V1 and V2, now we only set architecture in V2 image definition resource. 
https://github.com/openshift/installer/blob/master/data/data/azure/vnet/main.tf#L100-L128 

Description of problem:

When creating a pod with an additional network that contains a `spec.config.ipam.exclude` range, any address within the excluded range is still iterated while searching for a suitable IP candidate. As a result, pod creation times out when large exclude ranges are used.

Version-Release number of selected component (if applicable):

 

How reproducible:

with big exclude ranges, 100%

Steps to Reproduce:

1. create network-attachment-definition with a large range:

$ cat <<EOF| oc apply -f -       
apiVersion: k8s.cni.cncf.io/v1                                            
kind: NetworkAttachmentDefinition
metadata:
  name: nad-w-excludes
spec:
  config: |-
    {
      "cniVersion": "0.3.1",
      "name": "macvlan-net",
      "type": "macvlan",
      "master": "ens3",
      "mode": "bridge",
      "ipam": {
         "type": "whereabouts",
         "range": "fd43:01f1:3daa:0baa::/64",
         "exclude": [ "fd43:01f1:3daa:0baa::/100" ],
         "log_file": "/tmp/whereabouts.log",
         "log_level" : "debug"
      }
    }
EOF
2. create a pod with the network attached:

$ cat <<EOF|oc apply -f -
apiVersion: v1
kind: Pod
metadata:
  name: pod-with-exclude-range
  annotations:
    k8s.v1.cni.cncf.io/networks: nad-w-excludes
spec:
  containers:
  - name: pod-1
    image: openshift/hello-openshift
EOF

3. check pod status, event log and whereabouts logs after a while: 

$ oc get pods
NAME                        READY   STATUS              RESTARTS   AGE
pod-with-exclude-range      0/1     ContainerCreating   0          2m23s

$ oc get events
<...>
6m39s       Normal    Scheduled                                    pod/pod-with-exclude-range                   Successfully assigned default/pod-with-exclude-range to <worker-node>
6m37s       Normal    AddedInterface                               pod/pod-with-exclude-range                   Add eth0 [10.129.2.49/23] from openshift-sdn
2m39s       Warning   FailedCreatePodSandBox                       pod/pod-with-exclude-range                   Failed to create pod sandbox: rpc error: code = DeadlineExceeded desc = context deadline exceeded

$ oc debug node/<worker-node> - tail /host/tmp/whereabouts.log
Starting pod/<worker-node>-debug ...
To use host binaries, run `chroot /host`
2022-10-27T14:14:50Z [debug] Finished leader election
2022-10-27T14:14:50Z [debug] IPManagement: {fd43:1f1:3daa:baa::1 ffffffffffffffff0000000000000000} , <nil>
2022-10-27T14:14:59Z [debug] Used defaults from parsed flat file config @ /etc/kubernetes/cni/net.d/whereabouts.d/whereabouts.conf
2022-10-27T14:14:59Z [debug] ADD - IPAM configuration successfully read: {Name:macvlan-net Type:whereabouts Routes:[] Datastore:kubernetes Addresses:[] OmitRanges:[fd43:01f1:3daa:0baa::/80] DNS: {Nameservers:[] Domain: Search:[] Options:[]} Range:fd43:1f1:3daa:baa::/64 RangeStart:fd43:1f1:3daa:baa:: RangeEnd:<nil> GatewayStr: EtcdHost: EtcdUsername: EtcdPassword:********* EtcdKeyFile: EtcdCertFile: EtcdCACertFile: LeaderLeaseDuration:1500 LeaderRenewDeadline:1000 LeaderRetryPeriod:500 LogFile:/tmp/whereabouts.log LogLevel:debug OverlappingRanges:true SleepForRace:0 Gateway:<nil> Kubernetes: {KubeConfigPath:/etc/kubernetes/cni/net.d/whereabouts.d/whereabouts.kubeconfig K8sAPIRoot:} ConfigurationPath:PodName:pod-with-exclude-range PodNamespace:default} 
2022-10-27T14:14:59Z [debug] Beginning IPAM for ContainerID: f4ffd0e07d6c1a2b6ffb0fa29910c795258792bb1a1710ff66f6b48fab37af82
2022-10-27T14:14:59Z [debug] Started leader election
2022-10-27T14:14:59Z [debug] OnStartedLeading() called
2022-10-27T14:14:59Z [debug] Elected as leader, do processing
2022-10-27T14:14:59Z [debug] IPManagement - mode: 0 / containerID:f4ffd0e07d6c1a2b6ffb0fa29910c795258792bb1a1710ff66f6b48fab37af82 / podRef: default/pod-with-exclude-range
2022-10-27T14:14:59Z [debug] IterateForAssignment input >> ip: fd43:1f1:3daa:baa:: | ipnet: {fd43:1f1:3daa:baa:: ffffffffffffffff0000000000000000} | first IP: fd43:1f1:3daa:baa::1 | last IP: fd43:1f1:3daa:baa:ffff:ffff:ffff:ffff

Actual results:

Failed to create pod sandbox: rpc error: code = DeadlineExceeded desc = context deadline exceeded

Expected results:

additional network gets attached to the pod

Additional info:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Description of problem:

Deployed hypershift cluster with recent multi-arch build. 
Storage cluster operator has become available but having below warning message


PowerVSBlockCSIDriverOperatorCRDegraded: PowerVSBlockCSIDriverStaticResourcesControllerDegraded: "rbac/attacher_role.yaml" (string): clusterroles.rbac.authorization.k8s.io "ibm-powervs-block-external-attacher-role" is forbidden: user "system:serviceaccount:openshift-cluster-csi-drivers:powervs-block-csi-driver-operator" (groups=["system:serviceaccounts" "system:serviceaccounts:openshift-cluster-csi-drivers" "system:authenticated"]) is attempting to grant RBAC permissions not currently held:
PowerVSBlockCSIDriverOperatorCRDegraded: PowerVSBlockCSIDriverStaticResourcesControllerDegraded: {APIGroups:["csi.storage.k8s.io"], Resources:["csinodeinfos"], Verbs:["get" "list" "watch"]}
PowerVSBlockCSIDriverOperatorCRDegraded: PowerVSBlockCSIDriverStaticResourcesControllerDegraded: "rbac/attacher_binding.yaml" (string): clusterroles.rbac.authorization.k8s.io "ibm-powervs-block-external-attacher-role" not found

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.Deploy 4.12.0-0.nightly-multi-2022-09-01-220105 nightly build

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

It is a disconnected cluster on AWS. There is an issue configuring Egress IP where the cluster uses STS. While looking into cloud-network-config-controller pod it is trying to connect to the global sts service "https://sts.amazonaws.com/" rather it should connect to the regional one "https://ec2.ap-southeast-1.amazonaws.com".

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Create a disconected OCP cluster on AWS.
$ oc get netnamespace | grep egress
egress-ip-test                                     2689387    ["172.16.1.24"]
$ oc get hostsubnet
NAME                                              HOST                                              HOST IP        SUBNET          EGRESS CIDRS   EGRESS IPS
ip-172-16-1-151.ap-southeast-1.compute.internal   ip-172-16-1-151.ap-southeast-1.compute.internal   172.16.1.151   10.130.0.0/23                  
ip-172-16-1-53.ap-southeast-1.compute.internal    ip-172-16-1-53.ap-southeast-1.compute.internal    172.16.1.53    10.131.0.0/23                  ["172.16.1.24"]
ip-172-16-2-15.ap-southeast-1.compute.internal    ip-172-16-2-15.ap-southeast-1.compute.internal    172.16.2.15    10.128.0.0/23                  
ip-172-16-2-77.ap-southeast-1.compute.internal    ip-172-16-2-77.ap-southeast-1.compute.internal    172.16.2.77    10.128.2.0/23                  
ip-172-16-3-111.ap-southeast-1.compute.internal   ip-172-16-3-111.ap-southeast-1.compute.internal   172.16.3.111   10.129.0.0/23                  
ip-172-16-3-79.ap-southeast-1.compute.internal    ip-172-16-3-79.ap-southeast-1.compute.internal    172.16.3.79    10.129.2.0/23                  
$ oc logs sdn-controller-6m5kb -n openshift-sdn I0922 04:09:53.348615       1 vnids.go:105] Allocated netid 2689387 for namespace "egress-ip-test"
E0922 04:24:00.682018       1 egressip.go:254] Ignoring invalid HostSubnet ip-172-16-1-53.ap-southeast-1.compute.internal (host: "ip-172-16-1-53.ap-southeast-1.compute.internal", ip: "172.16.1.53", subnet: "10.131.0.0/23"): related node object "ip-172-16-1-53.ap-southeast-1.compute.internal" has an incomplete annotation "cloud.network.openshift.io/egress-ipconfig", CloudEgressIPConfig: <nil>
 $ oc logs cloud-network-config-controller-5c7556db9f-x78bs -n openshift-cloud-network-config-controller

E0922 04:26:59.468726       1 controller.go:165] error syncing 'ip-172-16-2-77.ap-southeast-1.compute.internal': error retrieving the private IP configuration for node: ip-172-16-2-77.ap-southeast-1.compute.internal, err: error: cannot list ec2 instance for node: ip-172-16-2-77.ap-southeast-1.compute.internal, err: WebIdentityErr: failed to retrieve credentials
caused by: RequestError: send request failed
caused by: Post "https://sts.amazonaws.com/": dial tcp 54.239.29.25:443: i/o timeout, requeuing in node workqueue
$ oc get Infrastructure -o yaml
apiVersion: v1
items:
- apiVersion: config.openshift.io/v1
  kind: Infrastructure
  metadata:
    creationTimestamp: "2022-09-22T03:28:15Z"
    generation: 1
    name: cluster
    resourceVersion: "598"
    uid: 994da301-2a96-43b7-b43b-4b7c18d4b716
  spec:
    cloudConfig:
      name: ""
    platformSpec:
      aws:
        serviceEndpoints:
        - name: sts
          url: https://sts.ap-southeast-1.amazonaws.com
        - name: ec2
          url: https://ec2.ap-southeast-1.amazonaws.com
        - name: elasticloadbalancing
          url: https://elasticloadbalancing.ap-southeast-1.amazonaws.com
      type: AWS
  status:
    apiServerInternalURI: https://api-int.openshiftyy.ocpaws.sadiqueonline.com:6443
    apiServerURL: https://api.openshiftyy.ocpaws.sadiqueonline.com:6443
    controlPlaneTopology: HighlyAvailable
    etcdDiscoveryDomain: ""
    infrastructureName: openshiftyy-wfrpf
    infrastructureTopology: HighlyAvailable
    platform: AWS
    platformStatus:
      aws:
        region: ap-southeast-1
        serviceEndpoints:
        - name: ec2
          url: https://ec2.ap-southeast-1.amazonaws.com
        - name: elasticloadbalancing
          url: https://elasticloadbalancing.ap-southeast-1.amazonaws.com
        - name: sts
          url: https://sts.ap-southeast-1.amazonaws.com
      type: AWS
kind: List
metadata:
  resourceVersion: ""
$ oc get secret aws-cloud-credentials -n openshift-machine-api -o json |jq -r .data.credentials |base64 -d 
[default]
sts_regional_endpoints = regional
role_arn = arn:aws:iam::015719942846:role/sputhenp-sts-yy-openshift-machine-api-aws-cloud-credentials
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
 
[ec2-user@ip-172-17-1-229 ~]$ oc get secret cloud-credential-operator-iam-ro-creds -n openshift-cloud-credential-operator -o json |jq -r .data.credentials |base64 -d 
[default]
sts_regional_endpoints = regional
role_arn = arn:aws:iam::015719942846:role/sputhenp-sts-yy-openshift-cloud-credential-operator-cloud-creden
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
 
[ec2-user@ip-172-17-1-229 ~]$ oc get secret installer-cloud-credentials -n openshift-image-registry -o json |jq -r .data.credentials |base64 -d 
[default]
sts_regional_endpoints = regional
role_arn = arn:aws:iam::015719942846:role/sputhenp-sts-yy-openshift-image-registry-installer-cloud-credent
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
 
[ec2-user@ip-172-17-1-229 ~]$ oc get secret cloud-credentials -n openshift-ingress-operator -o json |jq -r .data.credentials |base64 -d 
[default]
sts_regional_endpoints = regional
role_arn = arn:aws:iam::015719942846:role/sputhenp-sts-yy-openshift-ingress-operator-cloud-credentials
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
 
[ec2-user@ip-172-17-1-229 ~]$ oc get secret cloud-credentials -n openshift-cloud-network-config-controller -o json |jq -r .data.credentials |base64 -d 
[default]
sts_regional_endpoints = regional
role_arn = arn:aws:iam::015719942846:role/sputhenp-sts-yy-openshift-cloud-network-config-controller-cloud-
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
 
[ec2-user@ip-172-17-1-229 ~]$ oc get secret ebs-cloud-credentials -n openshift-cluster-csi-drivers -o json |jq -r .data.credentials |base64 -d
[default]
sts_regional_endpoints = regional
role_arn = arn:aws:iam::015719942846:role/sputhenp-sts-yy-openshift-cluster-csi-drivers-ebs-cloud-credenti
web_identity_token_file = /var/run/secrets/openshift/serviceaccount/token
 

 

Actual results:

Egress IP not configured properly and cloud-network-config-controller trying to connect to global STS service.

Expected results:

Egress IP should get configured and cloud-network-config-controller should connect to regional STS service instead of global.

Additional info:

 

Description of problem:

openshift-install does not detect releaseImage mismatches between cluster-image-set.yaml and registries.conf

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1.Create ZTP inputs for image generation where registries.conf does not have any source matching the binary releaseimage (the binary image which can be obtained by running "openshift-install version". You can also set this value in ZTP manifest cluster-image-set.yaml 
2.run openshift-install agent create image

Actual results:

Image is generated with no warnings

Expected results:

Image is generated with warning message - "The ImageContentSources configuration in install-config.yaml should have at-least one source field matching the releaseImage value %s", releaseImagePath

 

Additional info:

 

 

This is a clone of issue OCPBUGS-3426. The following is the description of the original issue:

Description of problem:

We need to update the operator to be synced with the K8 api version used by OCP 4.13. We also need to sync our samples libraries with latest available libraries. Any deprecated libraries should be removed as well.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-5182. The following is the description of the original issue:

Description of problem:

Deploy IPI cluster on azure cloud, set region as westeurope, vm size as EC96iads_v5 or EC96ias_v5. Installation fails with below error:

12-15 11:47:03.429  level=error msg=Error: creating Linux Virtual Machine: (Name "jima-15a-m6fzd-bootstrap" / Resource Group "jima-15a-m6fzd-rg"): compute.VirtualMachinesClient#CreateOrUpdate: Failure sending request: StatusCode=400 -- Original Error: Code="BadRequest" Message="The VM size 'Standard_EC96iads_v5' is not supported for creation of VMs and Virtual Machine Scale Set with '<NULL>' security type."

Similar as https://bugzilla.redhat.com/show_bug.cgi?id=2055247.

From azure portal, we can see that the type of both vm size EC96iads_v5 and EC96ias_v5 are confidential compute.

Might also need to do similar process for them as what did in bug 2055247.

 

Version-Release number of selected component (if applicable):

4.12 nightly build

How reproducible:

Always

Steps to Reproduce:

1. Prepare install-config.yaml file, set region as westeurope, vm size as EC96iads_v5 or EC96ias_v5
2. Deploy IPI azure cluster
3.

Actual results:

Install failed with error in description

Expected results:

Installer should be exited during validation and show expected error message. 

Additional info:

 

 

When we get telemetry from connected clusters, we want to be able to tell when they were created with the agent installer vs. the host assisted service. Currently there is no way to distinguish.

It's not clear whether any particular group owns the namespace of installation methods, or whom we need to notify when we create one.

This is a clone of issue OCPBUGS-4700. The following is the description of the original issue:

Description of problem:

In at least 4.12.0-rc.0, a user with read-only access to ClusterVersion can see an "Update blocked" pop-up talking about "...alert above the visualization...".  It is referencing a banner about "This cluster should not be updated to the next minor version...", but that banner is not displayed because hasPermissionsToUpdate is false, so canPerformUpgrade is false.

Version-Release number of selected component (if applicable):

4.12.0-rc.0. Likely more. I haven't traced it out.

How reproducible:

Always.

Steps to Reproduce:

1. Install 4.12.0-rc.0
2. Create a user with cluster-wide read-only permissions. For me, it's via binding to a sudoer ClusterRole. I'm not sure where that ClusterRole comes from, but it's:

$ oc get -o yaml clusterrole sudoer
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
  creationTimestamp: "2020-05-21T19:39:09Z"
  name: sudoer
  resourceVersion: "7715"
  uid: 28eb2ffa-dccd-47e8-a2d5-6a95e0e8b1e9
rules:
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:admin
  resources:
  - systemusers
  - users
  verbs:
  - impersonate
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:masters
  resources:
  - groups
  - systemgroups
  verbs:
  - impersonate

3. View /settings/cluster

Actual results:

See the "Update blocked" pop-up talking about "...alert above the visualization...".

Expected results:

Something more internally consistent. E.g. having the referenced banner "...alert above the visualization..." show up, or not having the "Update blocked" pop-up reference the non-existent banner.

This is a clone of issue OCPBUGS-95. The following is the description of the original issue:

In an OpenShift cluster with OpenShiftSDN network plugin with egressIP and NMstate operator configured, there are some conditions when the egressIP is deconfigured from the network interface.

 

The bug is 100% reproducible.

Steps for reproducing the issue are:

1. Install a cluster with OpenShiftSDN network plugin.

2. Configure egressip for a project.

3. Install NMstate operator.

4. Create a NodeNetworkConfigurationPolicy.

5. Identify on which node the egressIP is present.

6. Restart the nmstate-handler pod running on the identified node.

7. Verify that the egressIP is no more present.

Restarting the sdn pod related to the identified node will reconfigure the egressIP in the node.

This issue has a high impact since any changes triggered for the NMstate operator will prevent application traffic. For example, in the customer environment, the issue is triggered any time a new node is added to the cluster.

The expectation is that NMstate operator should not interfere with SDN configuration.

Description of problem:

When attempting to load ISO to the remote server, the InsertMedia request fails with `Base.1.5.PropertyMissing`. The system is Mt.Jade Server / GIGABYTE G242-P36. BMC is provided by Megarac.

Version-Release number of selected component (if applicable):

OCP 4.12

How reproducible:

Always

Steps to Reproduce:

1. Create a BMH against such server
2. Create InfraEnv and attempt provisioning

Actual results:

Image provisioning failed: Deploy step deploy.deploy failed with BadRequestError: HTTP POST https://192.168.53.149/redfish/v1/Managers/Self/VirtualMedia/CD1/Actions/VirtualMedia.InsertMedia returned code 400. Base.1.5.PropertyMissing: The property TransferProtocolType is a required property and must be included in the request. Extended information: [{'@odata.type': '#Message.v1_0_8.Message', 'Message': 'The property TransferProtocolType is a required property and must be included in the request.', 'MessageArgs': ['TransferProtocolType'], 'MessageId': 'Base.1.5.PropertyMissing', 'RelatedProperties': ['#/TransferProtocolType'], 'Resolution': 'Ensure that the property is in the request body and has a valid value and resubmit the request if the operation failed.', 'Severity': 'Warning'}].

Expected results:

Image provisioning to work

Additional info:

The following patch attempted to fix the problem: https://opendev.org/openstack/sushy/commit/ecf1bcc80bd14a1836d015c3dbdb4fd88f2bbd75

but the response code checked by the logic in the patch above is `Base.1.5.ActionParameterMissing` whic doesn’t quite address the response code I’m getting, which is Base.1.5.PropertyMissing

 

 

 

At runtime we know the version of OpenShift that we're installing, so we can dynamically generate the OS_IMAGES environment variable to point at the image for the current release. This will prevent having to add to the hard-coded list for every release.

Description of problem:

TO address: 'Static Pod is managed but errored" err="managed container xxx does not have Resource.Requests'

Version-Release number of selected component (if applicable):

4.12

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-3405. The following is the description of the original issue:

In case it should be used for publishing artifacts in CI jobs.

Look into to see if the following things are leaked:

  • pull secret
  • ssh key
  • potentially values in journal logs

This is a clone of issue OCPBUGS-3316. The following is the description of the original issue:

Description of problem:

Branch name in repository pipelineruns list view should match the actual github branch name.

Version-Release number of selected component (if applicable):

4.11.z

How reproducible:

alwaus

Steps to Reproduce:

1. Create a repository
2. Trigger the pipelineruns by push or pull request event on the github 

Actual results:

Branch name contains "refs-heads-" prefix in front of the actual branch name eg: "refs-heads-cicd-demo" (cicd-demo is the branch name)

Expected results:

Branch name should be the acutal github branch name. just `cicd-demo`should be shown in the branch column.

 

Additional info:
Ref: https://coreos.slack.com/archives/CHG0KRB7G/p1667564311865459

Description of problem:

If a master fails and is drained, the old copy of the metal3 pod gets stuck in Terminating state for some (possibly long) time. While the new pod works correctly, CBO expects only one port to exist and thus cannot determine the applicable Ironic IP address.

Version-Release number of selected component (if applicable):

 

How reproducible:

always

Steps to Reproduce:

1. On dev-scripts: virsh destroy <VM with metal3 pod>
2. Wait for drain to happen or trigger it manually
3. Check CBO logs

Actual results:

"unable to determine Ironic's IP to pass to the machine-image-customization-controller: there should be only one pod listed for the given label"

Expected results:

CBO reconfigures its pods with the new Ironic IP

Additional info:

I don't know how to filter out pods in Terminating state...

This is a clone of issue OCPBUGS-3499. The following is the description of the original issue:

Description of problem:

On clusters serving Route via CRD (i.e. MicroShift), Route validation does not perform the same validation as on OCP.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

$ cat<<EOF | oc apply --server-side -f-
apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: hello-microshift
spec:
  to:
    kind: Service
    name: hello-microshift
EOF

route.route.openshift.io/hello-microshift serverside-applied

$ oc get route hello-microshift -o yaml

apiVersion: route.openshift.io/v1
kind: Route
metadata:
  annotations:
    openshift.io/host.generated: "true"
  creationTimestamp: "2022-11-11T23:53:33Z"
  generation: 1
  name: hello-microshift
  namespace: default
  resourceVersion: "2659"
  uid: cd35cd20-b3fd-4d50-9912-f34b3935acfd
spec:
  host: hello-microshift-default.cluster.local
  to:
    kind: Service
    name: hello-microshift
  wildcardPolicy: None

$ cat<<EOF | oc apply --server-side -f-
apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: hello-microshift
spec:
  to:
    kind: Service
    name: hello-microshift
  wildcardPolicy: ""
EOF

Actual results:

route.route.openshift.io/hello-microshift serverside-applied

Expected results:

The Route "hello-microshift" is invalid: spec.wildcardPolicy: Invalid value: "": field is immutable 

Additional info:

** This change will be inert on OCP, which already has the correct behavior. **

 

We rely on the user providing accurate information about the MAC addresses in the agent-config, because at the point we read it we haven't seen the hosts yet. However, if the user gets this wrong then chaos may ensue.

Once inventory is available, we should validate that the user has not:

  • Specified MAC addresses that belong to two different agents in the same host config; nor
  • Specified MAC addresses that belong to the same agent in two different host configs

and fail the install if they have.

This is a clone of https://bugzilla.redhat.com/show_bug.cgi?id=2083087 (OCPBUGSM-44070) to backport this issue.

Description of problem:
"Delete dependent objects of this resource" is a bit of confusing for some users because when creating the Application in Dev console not only the deployment but also IS, route, svc, secret objects will be created as well. When deleting the Application (in fact it is deployment), there is an option called "Delete dependent objects of this resource" and some users might think this means the IS, route, svc and any other objects which are created alongside with the deployment will be deleted as well

Version-Release number of selected component (if applicable):
4.8

How reproducible:
Always

Steps to Reproduce:
1. Create Application in Dev console
2. Delete the deployment
3. Check "Delete dependent objects of this resource"

Actual results:
Only deployment will be deleted and IS, svc, route will not be deleted

Expected results:
We either change the description of this option, or we really delete IS, svc, route and any other objects created under this Application.

Additional info:

Description of problem:
If cluster install failed and no tag attached to vm, run ./openshift-install destroy cluster get stuck, details pls see openshift-install.log
...
time="2022-09-28T08:19:14-04:00" level=debug msg="Delete Folder"
time="2022-09-28T08:19:14-04:00" level=debug msg="Find attached Folder on tag"
time="2022-09-28T08:19:15-04:00" level=debug msg="Folder: Expected Folder sgao-rtf6v to be empty"
time="2022-09-28T08:19:25-04:00" level=debug msg="Power Off Virtual Machines"
time="2022-09-28T08:19:25-04:00" level=debug msg="Find attached VirtualMachine on tag"
time="2022-09-28T08:19:25-04:00" level=debug msg="Delete Virtual Machines"
time="2022-09-28T08:19:25-04:00" level=debug msg="Find attached VirtualMachine on tag"
time="2022-09-28T08:19:25-04:00" level=debug msg="Delete Folder"
time="2022-09-28T08:19:25-04:00" level=debug msg="Find attached Folder on tag"
time="2022-09-28T08:19:25-04:00" level=debug msg="Folder: Expected Folder sgao-rtf6v to be empty"
time="2022-09-28T08:19:35-04:00" level=debug msg="Power Off Virtual Machines"
time="2022-09-28T08:19:35-04:00" level=debug msg="Find attached VirtualMachine on tag"
time="2022-09-28T08:19:35-04:00" level=debug msg="Delete Virtual Machines"
time="2022-09-28T08:19:35-04:00" level=debug msg="Find attached VirtualMachine on tag"
time="2022-09-28T08:19:35-04:00" level=debug msg="Delete Folder"

Version-Release number of selected component (if applicable):
4.12.0-0.nightly-2022-09-25-071630

How reproducible:
always when cluster install failed and no tag attached to vm

Steps to Reproduce:
1. cluster install failed and no tag attached to vm
2. run ./openshift-install destroy cluster
3.

Actual results:
installer destroy get stuck

Expected results:
installer destroy should set timeout and be able to quit in such situation

Additional info:

Description of problem:

console.openshift.io/use-i18n false in v1alpha API is converted to "" in the v1 APi, which is not a valid value for the enum type declared in the code. 

Version-Release number of selected component (if applicable):

 4.12.0-0.nightly-2022-09-25-071630

How reproducible:

Always

Steps to Reproduce:

1. Load a dynamic plugin with v1alpha API console.openshift.io/use-i18n set to 'false'
2. In the v1 API the {"spec":{"i18n":{"loadType":""}}} loadType is set to empty string, which is not a valid value defined here: https://github.com/jhadvig/api/blob/22d69793277ffeb618d642724515f249262959a5/console/v1/types_console_plugin.go#L46
https://github.com/openshift/api/pull/1186/files# 

Actual results:

{"spec":{"i18n":{"loadType":""}}}

Expected results:

{"spec":{"i18n":{"loadType":"Lazy"}}}

Additional info:

 

Description of problem:

Bootstrap fail in SNO installation

Version-Release number of selected component (if applicable):

 

How reproducible:

always

Steps to Reproduce:

1. Test this in libvirt env. Agent-config and install-config in attached.
2. Use attached agent-config and install-config to create image
3. Install SNO:
virt-install --connect qemu:///system -n control-0 -r 33000 --vcpus 8 --cdrom ./agent.iso --disk pool=installer,size=120 --boot uefi,hd,cdrom --os-variant=rhel8.5 --network network=default,mac=52:54:00:aa:aa:aa --wait=-1 --check mac_in_use=off
4. There is following error in bootkube.service log:
-- Logs begin at Fri 2022-09-30 08:58:21 UTC, end at Fri 2022-09-30 09:19:40 UTC. --
Sep 30 09:00:51 test.metalkube.org systemd[1]: Starting Bootkube - bootstrap in place post reboot...
Sep 30 09:00:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Running bootkube bootstrap-in-place post reboot
Sep 30 09:00:52 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:00:57 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:01:02 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:01:07 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:01:12 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Waiting for api ...
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]: error: error executing jsonpath "{.items[0].status.conditions[?(@.type==\"Ready\")].status}": Error executing template: array index out of bounds: index 0, length 0. Printing more information for debugging the template:
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]:         template was:
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]:                 {.items[0].status.conditions[?(@.type=="Ready")].status}
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]:         object given to jsonpath engine was:
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[3045]:                 map[string]interface {}{"apiVersion":"v1", "items":[]interface {}{}, "kind":"List", "metadata":map[string]interface {}{"resourceVersion":""}}
Sep 30 09:01:17 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]: error: error executing jsonpath "{.items[0].status.conditions[?(@.type==\"Ready\")].status}": Error executing template: array index out of bounds: index 0, length 0. Printing more information for debugging the template:
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]:         template was:
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]:                 {.items[0].status.conditions[?(@.type=="Ready")].status}
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]:         object given to jsonpath engine was:
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[3142]:                 map[string]interface {}{"apiVersion":"v1", "items":[]interface {}{}, "kind":"List", "metadata":map[string]interface {}{"resourceVersion":""}}
Sep 30 09:01:51 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...
Sep 30 09:02:21 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...
Sep 30 09:02:52 test.metalkube.org bootstrap-in-place-post-reboot.sh[2409]: Approving csrs ...

Actual results:

 

Expected results:

 

Additional info:

 

The test results in sippy look really bad on our less common platforms, but still pretty unacceptable even on core clouds. It's reasonably often the only test that fails. We need to decide what to do here, and we're going to need input from the etcd team.

As of Sep 13th:

  • several vsphere and openstack variant combo's fail this test around 24-32% of the time
  • aws, amd64, ovn, upgrade, upgrade-micro, ha - fails 6% of the time
  • aws, amd64, ovn, upgrade, upgrade-minor, ha - fails 4% of the time
  • gcp, amd64, sdn, upgrade, upgrade-minor, ha - fails 8% of the time
  • globally across all jobs fails around 3% of the time.

Even on some major variant combos, a 4-8% failure rate is too high.
On Sep 13 arch call (no etcd present), Damien mentioned this might be an upstream alert that just isn't well suited for OpenShift's use cases, is this the case and it needs tuning?

Has the problem been getting worse?

I believe this link https://datastudio.google.com/s/urkKwmmzvgo indicates that this may be the case for 4.12, AWS and Azure are both getting worse in ways that I don't see if we change the release to 4.11 where it looks consistent. gcp seems fine on 4.12. We do not have data for vsphere for some reason.

This link shows the grpc_methods most commonly involved: https://search.ci.openshift.org/?search=etcdGRPCRequestsSlow+was+at+or+above&maxAge=48h&context=7&type=junit&name=&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

At a glance: LeaseGrant, MemberList, Txn, Status, Range.

Broken out of TRT-401
For linking with sippy:
[bz-etcd][invariant] alert/etcdGRPCRequestsSlow should not be at or above info
[sig-arch][bz-etcd][Late] Alerts alert/etcdGRPCRequestsSlow should not be at or above info [Suite:openshift/conformance/parallel]

 

Description of problem:

scale up more worker nodes but they are not added to the Load Balancer instances (backend pool), if moving the router pod to the new worker nodes then co/ingress becomes degraded

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-23-204408

How reproducible:

100%

Steps to Reproduce:

1. ensure the fresh install cluster works well.
2. scale up worker nodes.
$ oc -n openshift-machine-api get machineset
NAME                                  DESIRED   CURRENT   READY   AVAILABLE   AGE
hongli-1024-hnkrm-worker-us-east-2a   1         1         1       1           5h21m
hongli-1024-hnkrm-worker-us-east-2b   1         1         1       1           5h21m
hongli-1024-hnkrm-worker-us-east-2c   1         1         1       1           5h21m

$ oc -n openshift-machine-api scale machineset hongli-1024-hnkrm-worker-us-east-2a --replicas=2
machineset.machine.openshift.io/hongli-1024-hnkrm-worker-us-east-2a scaled

$ oc -n openshift-machine-api scale machineset hongli-1024-hnkrm-worker-us-east-2b --replicas=2
machineset.machine.openshift.io/hongli-1024-hnkrm-worker-us-east-2b scaled

(about 5 minutes later)
$ oc -n openshift-machine-api get machineset
NAME                                  DESIRED   CURRENT   READY   AVAILABLE   AGE
hongli-1024-hnkrm-worker-us-east-2a   2         2         2       2           5h29m
hongli-1024-hnkrm-worker-us-east-2b   2         2         2       2           5h29m
hongli-1024-hnkrm-worker-us-east-2c   1         1         1       1           5h29m


3. delete router pods and to make new ones running on new workers

$ oc get node
NAME                                         STATUS   ROLES                  AGE     VERSION
ip-10-0-128-45.us-east-2.compute.internal    Ready    worker                 71m     v1.25.2+4bd0702
ip-10-0-131-192.us-east-2.compute.internal   Ready    control-plane,master   6h35m   v1.25.2+4bd0702
ip-10-0-139-51.us-east-2.compute.internal    Ready    worker                 6h29m   v1.25.2+4bd0702
ip-10-0-162-228.us-east-2.compute.internal   Ready    worker                 71m     v1.25.2+4bd0702
ip-10-0-172-216.us-east-2.compute.internal   Ready    control-plane,master   6h35m   v1.25.2+4bd0702
ip-10-0-190-82.us-east-2.compute.internal    Ready    worker                 6h25m   v1.25.2+4bd0702
ip-10-0-196-26.us-east-2.compute.internal    Ready    control-plane,master   6h35m   v1.25.2+4bd0702
ip-10-0-199-158.us-east-2.compute.internal   Ready    worker                 6h28m   v1.25.2+4bd0702

$ oc -n openshift-ingress get pod -owide
NAME                              READY   STATUS    RESTARTS   AGE   IP           NODE                                         NOMINATED NODE   READINESS GATES
router-default-86444dcd84-cm96l   1/1     Running   0          65m   10.130.2.7   ip-10-0-128-45.us-east-2.compute.internal    <none>           <none>
router-default-86444dcd84-vpnjz   1/1     Running   0          65m   10.131.2.7   ip-10-0-162-228.us-east-2.compute.internal   <none>           <none>


Actual results:

$ oc get co ingress console authentication
NAME             VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
ingress          4.12.0-0.nightly-2022-10-23-204408   True        False         True       66m     The "default" ingress controller reports Degraded=True: DegradedConditions: One or more other status conditions indicate a degraded state: CanaryChecksSucceeding=False (CanaryChecksRepetitiveFailures: Canary route checks for the default ingress controller are failing)
console          4.12.0-0.nightly-2022-10-23-204408   False       False         False      66m     RouteHealthAvailable: failed to GET route (https://console-openshift-console.apps.hongli-1024.qe.devcluster.openshift.com): Get "https://console-openshift-console.apps.hongli-1024.qe.devcluster.openshift.com": EOF
authentication   4.12.0-0.nightly-2022-10-23-204408   False       False         True       66m     OAuthServerRouteEndpointAccessibleControllerAvailable: Get "https://oauth-openshift.apps.hongli-1024.qe.devcluster.openshift.com/healthz": EOF


checked the Load Balancer on AWS console and found that new created nodes are not added to load balancer. see the snapshot attached.

Expected results:

the LB should added new created instances automatically and ingress should work with new workers.

Additional info:

1. this is also reproducible with common user created LoadBalancer service.
2. if the LB service is created after adding the new nodes then it works well, we can see that all nodes are added to LB on AWS console.  

 

Description of problem:

metal3 pod does not come up on SNO when creating Provisioning with provisioningNetwork set to Disabled

The issue is that on SNO, there is no Machine, and no BareMetalHost, it is looking of Machine objects to populate the provisioningMacAddresses field. However, when provisioningNetwork is Disabled, provisioningMacAddresses is not used anyway.

You can work around this issue by populating provisioningMacAddresses with a dummy address, like this:

kind: Provisioning
metadata:
  name: provisioning-configuration
spec:
  provisioningMacAddresses:
  - aa:aa:aa:aa:aa:aa
  provisioningNetwork: Disabled
  watchAllNamespaces: true

Version-Release number of selected component (if applicable):

4.11.17

How reproducible:

Try to bring up Provisioning on SNO in 4.11.17 with provisioningNetwork set to Disabled

apiVersion: metal3.io/v1alpha1
kind: Provisioning
metadata:
  name: provisioning-configuration
spec:
  provisioningNetwork: Disabled
  watchAllNamespaces: true

Steps to Reproduce:

1.
2.
3.

Actual results:

controller/provisioning "msg"="Reconciler error" "error"="machines with cluster-api-machine-role=master not found" "name"="provisioning-configuration" "namespace"="" "reconciler group"="metal3.io" "reconciler kind"="Provisioning"

Expected results:

metal3 pod should be deployed

Additional info:

This issue is a result of this change: https://github.com/openshift/cluster-baremetal-operator/pull/307
See this Slack thread: https://coreos.slack.com/archives/CFP6ST0A3/p1670530729168599

When using an install-config with missing VIP values set in the baremetal-platform section, we attempt to get defaults for them by doing a DNS lookup on the cluster domain name. If this lookup fails, we set the error message from DNS as the default value, resulting in a very confusing error message:

[platform.baremetal.apiVIPs: Invalid value: []string{"DNS lookup failure: lookup api.test-cluster.test-domain on 10.0.80.11:53: no such host"}: ip <nil> is invalid, platform.baremetal.apiVIPs: Invalid value: "DNS lookup failure: lookup api.test-cluster.test-domain on 10.0.80.11:53: no such host": "DNS lookup failure: lookup api.test-cluster.test-domain on 10.0.80.11:53: no such host" is not a valid IP, platform.baremetal.apiVIPs: Invalid value: "DNS lookup failure: lookup api.test-cluster.test-domain on 10.0.80.11:53: no such host": IP expected to be in one of the machine networks: 192.168.122.0/23]

This has been the case since the inception of baremetal IPI, but it has gotten considerably worse in 4.12 due to the VIP fields changing from a single string to a list.

If the user doesn't supply a value and we can't generate a sensible default, we should report that the error is that they didn't supply a value, not that they supplied an invalid value that they did not in fact supply:

[platform.baremetal.apiVIPs: Required value: must specify at least one VIP for the API, platform.baremetal.apiVIPs: Required value: must specify VIP for API, when VIP for ingress is set]

Description of problem:

This is a clone of https://bugzilla.redhat.com/show_bug.cgi?id=2074299 for backporting purposes.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

Git icon shown in the repository details page should be based on the git provider.

Version-Release number of selected component (if applicable):
4.11

How reproducible:
Always

Steps to Reproduce:
1. Create a Repository with gitlab repo url
2. Navigate to the detail page.

Actual results:

github icon is displayed for the gitlab url.

Expected results:

gitlab icon should be displayed for the gitlab url.

Additional info:

use `GitLabIcon` and `BitBucketIcon` from patternfly react-icons.

This is a clone of issue OCPBUGS-4049. The following is the description of the original issue:

Description of problem:

In case of CRC we provision the cluster first and the create the disk image out of it and that what we share to our users. Now till now we always remove the pull secret from the cluster after provision it using https://github.com/crc-org/snc/blob/master/snc.sh#L241-L258 and it worked without any issue till 4.11.x but for 4.12.0-rc.1 we are seeing that MCO not able to reconcile.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Create a single node cluster using cluster bot `launch 4.12.0-rc.1 aws,single-node` 

2. Once cluster is provisioned update the pull secret from the config 

```
$ cat pull-secret.yaml 
apiVersion: v1
data:
  .dockerconfigjson: e30K
kind: Secret
metadata:
  name: pull-secret
  namespace: openshift-config
type: kubernetes.io/dockerconfigjson
$ oc replace -f pull-secret.yaml
```

3. Wait for MCO recocile and you will see failure to reconcile MCO

Actual results:

$ oc get mcp
NAME     CONFIG                                             UPDATED   UPDATING   DEGRADED   MACHINECOUNT   READYMACHINECOUNT   UPDATEDMACHINECOUNT   DEGRADEDMACHINECOUNT   AGE
master   rendered-master-66086aa249a9f92b773403f7c3745ea4   False     True       True       1              0                   0                     1                      94m
worker   rendered-worker-0c07becff7d3c982e24257080cc2981b   True      False      False      0              0                   0                     0                      94m


$ oc get co machine-config
NAME             VERSION       AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
machine-config   4.12.0-rc.1   True        False         True       93m     Failed to resync 4.12.0-rc.1 because: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool master is not ready, retrying. Status: (pool degraded: true total: 1, ready 0, updated: 0, unavailable: 0)]

$ oc logs machine-config-daemon-nf9mg -n openshift-machine-config-operator
[...]
I1123 15:00:37.864581   10194 run.go:19] Running: podman pull -q --authfile /var/lib/kubelet/config.json quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba
Error: initializing source docker://quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: (Mirrors also failed: [quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: authentication required]): quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quay.io/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: access to the requested resource is not authorized
W1123 15:00:39.186103   10194 run.go:45] podman failed: running podman pull -q --authfile /var/lib/kubelet/config.json quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba failed: Error: initializing source docker://quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: (Mirrors also failed: [quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quayio-pull-through-cache-us-west-2-ci.apps.ci.l2s4.p1.openshiftapps.com/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: authentication required]): quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba: reading manifest sha256:ffa3568233298408421ff7da60e5c594fb63b2551c6ab53843eb51c8cf6838ba in quay.io/openshift-release-dev/ocp-v4.0-art-dev: unauthorized: access to the requested resource is not authorized
: exit status 125; retrying...

Expected results:

 

Additional info:

 

Description of problem:

If you set a services cluster IP to an IP with a leading zero (e.g. 192.168.0.011), ovn-k should normalise this and remove the leading zero before sending it to ovn.

This was seen by me on a CI run executing the k8 test here: test/e2e/network/funny_ips.go +75

you can reproduce using that above test.

Have a read of the text there:

 43 // What are funny IPs:  
 44 // The adjective is because of the curl blog that explains the history and the problem of liberal  
 45 // parsing of IP addresses and the consequences and security risks caused the lack of normalization,
 46 // mainly due to the use of different notations to abuse parsers misalignment to bypass filters.
 47 // xref: https://daniel.haxx.se/blog/2021/04/19/curl-those-funny-ipv4-addresses/   
 48 //     
 49 // Since golang 1.17, IPv4 addresses with leading zeros are rejected by the standard library.
 50 // xref: https://github.com/golang/go/issues/30999
 51 //     
 52 // Because this change on the parsers can cause that previous valid data become invalid, Kubernetes
 53 // forked the old parsers allowing leading zeros on IPv4 address to not break the compatibility.
 54 //     
 55 // Kubernetes interprets leading zeros on IPv4 addresses as decimal, users must not rely on parser
 56 // alignment to not being impacted by the associated security advisory: CVE-2021-29923 golang
 57 // standard library "net" - Improper Input Validation of octal literals in golang 1.16.2 and below
 58 // standard library "net" results in indeterminate SSRF & RFI vulnerabilities. xref:
 59 // https://nvd.nist.gov/vuln/detail/CVE-2021-29923                                                                                                     

northd is logging an error about this also:

|socket_util|ERR|172.30.0.011:7180: bad IP address "172.30.0.011" 
...
2022-08-23T14:14:21.968Z|01839|ovn_util|WARN|bad ip address or port for load balancer key 172.30.0.011:7180

 

Also, I see the error:

E0823 14:14:34.135115    3284 gateway_shared_intf.go:600] Failed to delete conntrack entry for service e2e-funny-ips-8626/funny-ip: failed to delete conntrack entry for service e2e-funny-ips-8626/funny-ip with svcVIP 172.30.0.011, svcPort 7180, protocol TCP: value "<nil>" passed to DeleteConntrack is not an IP address 

We should normalise the IPs before sending to OVN-k. I see also theres conntrack error when trying to set this bad IP.

 

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1. See above k8 test

Actual results:

Leading zero IP sent to OVN

Expected results:

No leading zero IP sent to OVN

Additional info:

Description of problem:

when provisioningNetwork is changed from Disabled to Managed/Unmanaged, the ironic-proxy daemonset is not removed

This causes the metal3 pod to be stuck in pending, since both pods are trying to use port 6385 on the host:

0/3 nodes are available: 3 node(s) didn't have free ports for the requested pod ports. preemption: 0/3 nodes are available: 3 node(s) didn't have free ports for the requested pod ports

Version-Release number of selected component (if applicable):

4.12rc.4

How reproducible:

Every time for me

Steps to Reproduce:

1. On a multinode cluster, change the provisioningNetwork from Disabled to Unmanaged (I didn't try Managed)
2.
3.

Actual results:

0/3 nodes are available: 3 node(s) didn't have free ports for the requested pod ports. preemption: 0/3 nodes are available: 3 node(s) didn't have free ports for the requested pod ports

Expected results:

I believe the ironic-proxy daemonset should be deleted when the provisioningNetwork is set to Managed/Unmanaged

Additional info:

If I manually delete the ironic-proxy Daemonset, the controller does not re-create it.

This is a clone of issue OCPBUGS-2500. The following is the description of the original issue:

Description of problem:

When the Ux switches to the Dev console the topology is always blank in a Project that has a large number of components.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always occurs

Steps to Reproduce:

1.Create a project with at least 12 components (Apps, Operators, knative Brokers)
2. Go to the Administrator Viewpoint
3. Switch to Developer Viewpoint/Topology
4. No components displayed
5. Click on 'fit to screen'
6. All components appear

Actual results:

Topology renders with all controls but no components visible (see screenshot 1)

Expected results:

All components should be visible

Additional info:

 

This is a clone of issue OCPBUGS-6018. The following is the description of the original issue:

This is a public clone of OCPBUGS-3821

The MCO can sometimes render a rendered-config in the middle of an upgrade with old MCs, e.g.:

  1. the containerruntimeconfigcontroller creates a new containerruntimeconfig due to the update
  2. the template controller finishes re-creating the base configs
  3. the kubeletconfig errors long enough and doesn't finish until after 2

This will cause the render controller to create a new rendered MC that uses the OLD kubeletconfig-MC, which at best is a double reboot for 1 node, and at worst block the update and break maxUnavailable nodes per pool.

Description of the problem:

During install, we assume all PVs on a host have been added to a volume group and only remove them if they are. This could let other PVs that are not attached to volume groups persist and prevent coreos from installing properly. 

Relevant assisted installer links:

https://github.com/openshift/assisted-installer/blob/9bec593930995220a2a4550b067f5a186de3b042/src/installer/installer.go#L809 

https://github.com/openshift/assisted-installer/blob/9bec593930995220a2a4550b067f5a186de3b042/src/ops/ops.go#L414

 

Found while investigating triage issue https://issues.redhat.com/browse/AITRIAGE-4017 

See slack thread for more details https://coreos.slack.com/archives/C02CP89N4VC/p1663263128420489 

How reproducible:

100%

Steps to reproduce:

1. Create a host with a PV w/o a volume group

2. Add host to cluster and install 

3. Observe the install fail

Actual results:

Installation fails with 

"Error: checking for exclusive access to /dev/sda 
Caused by:
| 0: couldn't reread partition table: device is in use |
| 1: EBUSY: Device or resource busy" 

Expected results:

All PVs and VGs are removed so that the installation will succeed

In the Known Issues section of the OpenStack-specific Installer docs issues, there is a point about control plane anti-affinity.

The known issue has several problems:

  • it is in the UPI section, when it is not a UPI-specific issue
  • it mentions Control plane scale-out, when OCP only supports exactly 3 masters
  • it is now possible to set anti-affinity from the install-config.yaml, and that should be the recommended solution when VM distribution across hosts is required.

This is a clone of issue OCPBUGS-3123. The following is the description of the original issue:

Description of problem:

Support for tech preview API extensions was introduced in https://github.com/openshift/installer/pull/6336 and https://github.com/openshift/api/pull/1274 .  In the case of https://github.com/openshift/api/pull/1278 , config/v1/0000_10_config-operator_01_infrastructure-TechPreviewNoUpgrade.crd.yaml was introduced which seems to result in both 0000_10_config-operator_01_infrastructure-TechPreviewNoUpgrade.crd.yaml and 0000_10_config-operator_01_infrastructure-Default.crd.yaml being rendered by the bootstrap.  As a result, both CRDs are created during bootstrap.  However, one of them(in this case the tech preview CRD) fails to be created.  

We may need to modify the render command to be aware of feature gates when rendering manifests during bootstrap.  Also, I'm open hearing other views on how this might work. 

Version-Release number of selected component (if applicable):

https://github.com/openshift/cluster-config-operator/pull/269 built and running on 4.12-ec5 

How reproducible:

consistently

Steps to Reproduce:

1. bump the version of OpenShift API to one including a tech preview version of the infrastructure CRD
2. install openshift with the infrastructure manifest modified to incorporate tech preview fields
3. those fields will not be populated upon installation

Also, checking the logs from bootkube will show both being installed, but one of them fails.

Actual results:

 

Expected results:

 

Additional info:

Excerpts from bootkube log
Nov 02 20:40:01 localhost.localdomain bootkube.sh[4216]: Writing asset: /assets/config-bootstrap/manifests/0000_10_config-operator_01_infrastructure-TechPreviewNoUpgrade.crd.yaml
Nov 02 20:40:01 localhost.localdomain bootkube.sh[4216]: Writing asset: /assets/config-bootstrap/manifests/0000_10_config-operator_01_infrastructure-Default.crd.yaml


Nov 02 20:41:23 localhost.localdomain bootkube.sh[5710]: Created "0000_10_config-operator_01_infrastructure-Default.crd.yaml" customresourcedefinitions.v1.apiextensions.k8s.io/infrastructures.config.openshift.io -n
Nov 02 20:41:23 localhost.localdomain bootkube.sh[5710]: Skipped "0000_10_config-operator_01_infrastructure-TechPreviewNoUpgrade.crd.yaml" customresourcedefinitions.v1.apiextensions.k8s.io/infrastructures.config.openshift.io -n  as it already exists

 

 

 

This is a clone of issue OCPBUGS-4089. The following is the description of the original issue:

The kube-state-metric pod inside the openshift-monitoring namespace is not running as expected.

On checking the logs I am able to see that there is a memory panic

~~~
2022-11-22T09:57:17.901790234Z I1122 09:57:17.901768 1 main.go:199] Starting kube-state-metrics self metrics server: 127.0.0.1:8082
2022-11-22T09:57:17.901975837Z I1122 09:57:17.901951 1 main.go:66] levelinfomsgTLS is disabled.http2false
2022-11-22T09:57:17.902389844Z I1122 09:57:17.902291 1 main.go:210] Starting metrics server: 127.0.0.1:8081
2022-11-22T09:57:17.903191857Z I1122 09:57:17.903133 1 main.go:66] levelinfomsgTLS is disabled.http2false
2022-11-22T09:57:17.906272505Z I1122 09:57:17.906224 1 builder.go:191] Active resources: certificatesigningrequests,configmaps,cronjobs,daemonsets,deployments,endpoints,horizontalpodautoscalers,ingresses,jobs,leases,limitranges,mutatingwebhookconfigurations,namespaces,networkpolicies,nodes,persistentvolumeclaims,persistentvolumes,poddisruptionbudgets,pods,replicasets,replicationcontrollers,resourcequotas,secrets,services,statefulsets,storageclasses,validatingwebhookconfigurations,volumeattachments
2022-11-22T09:57:17.917758187Z E1122 09:57:17.917560 1 runtime.go:78] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
2022-11-22T09:57:17.917758187Z goroutine 24 [running]:
2022-11-22T09:57:17.917758187Z k8s.io/apimachinery/pkg/util/runtime.logPanic(

{0x1635600, 0x2696e10})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:74 +0x7d
2022-11-22T09:57:17.917758187Z k8s.io/apimachinery/pkg/util/runtime.HandleCrash({0x0, 0x0, 0xfffffffe})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:48 +0x75
2022-11-22T09:57:17.917758187Z panic({0x1635600, 0x2696e10}

)
2022-11-22T09:57:17.917758187Z /usr/lib/golang/src/runtime/panic.go:1038 +0x215
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/internal/store.ingressMetricFamilies.func6(0x40)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/internal/store/ingress.go:136 +0x189
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/internal/store.wrapIngressFunc.func1(

{0x17fe520, 0xc00063b590})
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/internal/store/ingress.go:175 +0x49
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/pkg/metric_generator.(*FamilyGenerator).Generate(...)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/pkg/metric_generator/generator.go:67
2022-11-22T09:57:17.917758187Z k8s.io/kube-state-metrics/v2/pkg/metric_generator.ComposeMetricGenFuncs.func1({0x17fe520, 0xc00063b590}

)
2022-11-22T09:57:17.917758187Z /go/src/k8s.io/kube-state-metrics/pkg/metric_generator/generator.go:107 +0xd8
~~~

Logs are attached to the support case

This is a clone of issue OCPBUGS-7374. The following is the description of the original issue:

Originally reported by lance5890 in issue https://github.com/openshift/cluster-etcd-operator/issues/1000

The controllers sometimes get stuck on listing members in failure scenarios, this is known and can be mitigated by simply restarting the CEO. 

similar BZ 2093819 with stuck controllers was fixed slightly different in https://github.com/openshift/cluster-etcd-operator/commit/4816fab709e11e0681b760003be3f1de12c9c103

 

This fix was contributed by lance5890, thanks a lot!

 

This is a clone of issue OCPBUGS-3668. The following is the description of the original issue:

Description of problem:

Installer fails to install 4.12.0-rc.0 on VMware IPI with the script that worked with prior OCP versions.
Error happens during Terraform prepare step when gathering information in the "Platform Provisioning Check". It looks like a permission issue, but we're using the VCenter administrator account. I double checked and that account has all the necessary permissions.

Version-Release number of selected component (if applicable):

OCP installer 4.12.0-rc.0
VSphere & Vcenter 7.0.3 - no pending updates

How reproducible:

always - we observed this already in the nightlies, but wanted to wait for a RC to confirm

Steps to Reproduce:

1. Try to install using the openshift-install binary

Actual results:

Fails during the preparation step

Expected results:

Installs the cluster ;)

Additional info:

This runs in our CICD pipeline, let me know if you want to need access to the full run log:
https://gitlab.consulting.redhat.com/cblum/storage-ocs-lab/-/jobs/219304

This includes the install-config.yaml, all component versions and the full debug log output

Description of problem:

See: https://issues.redhat.com/browse/CPSYN-143

tldr:  Based on the previous direction that 4.12 was going to enforce PSA restricted by default, OLM had to make a few changes because the way we run catalog pods (and we have to run them that way because of how the opm binary worked) was incompatible w/ running restricted.

1) We set openshift-marketplace to enforce restricted (this was our choice, we didn't have to do it, but we did)
2) we updated the opm binary so catalog images using a newer opm binary don't have to run privileged
3) we added a field to catalogsource that allows you to choose whether to run the pod privileged(legacy mode) or restricted.  The default is restricted.  We made that the default so that users running their own catalogs in their own NSes (which would be default PSA enforcing) would be able to be successful w/o needing their NS upgraded to privileged.

Unfortunately this means:
1) legacy catalog images(i.e. using older opm binaries) won't run on 4.12 by default (the catalogsource needs to be modified to specify legacy mode.
2) legacy catalog images cannot be run in the openshift-marketplace NS since that NS does not allow privileged pods.  This means legacy catalogs can't contribute to the global catalog (since catalogs must be in that NS to be in the global catalog).

Before 4.12 ships we need to:
1) remove the PSA restricted label on the openshift-marketplace NS
2) change the catalogsource securitycontextconfig mode default to use "legacy" as the default, not restricted.

This gives catalog authors another release to update to using a newer opm binary that can run restricted, or get their NSes explicitly labeled as privileged (4.12 will not enforce restricted, so in 4.12 using the legacy mode will continue to work)

In 4.13 we will need to revisit what we want the default to be, since at that point catalogs will start breaking if they try to run in legacy mode in most NSes.


Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


This is a clone of issue OCPBUGS-3993. The following is the description of the original issue:

Description of problem:
On Openshift on Openstack CI, we are deploying an OCP cluster with an additional network on the workers in install-config.yaml for integration with Openstack Manila.

compute:
- name: worker
  platform:
    openstack:
      zones: []
      additionalNetworkIDs: ['0eeae16f-bbc7-4e49-90b2-d96419b7c30d']
  replicas: 3

As a result, the egressIP annotation includes two interfaces definition:

$ oc get node ostest-hp9ld-worker-0-gdp5k -o json | jq -r '.metadata.annotations["cloud.network.openshift.io/egress-ipconfig"]' | jq .                                 
[
  {
    "interface": "207beb76-5476-4a05-b412-d0cc53ab00a7",
    "ifaddr": {
      "ipv4": "10.46.44.64/26"
    },
    "capacity": {
      "ip": 8
    }
  },
  {
    "interface": "2baf2232-87f7-4ad5-bd80-b6586de08435",
    "ifaddr": {
      "ipv4": "172.17.5.0/24"
    },
    "capacity": {
      "ip": 10
    }
  }
]

According to Huiran Wang, egressIP only works for primary interface on the node.

Version-Release number of selected component (if applicable):

 4.12.0-0.nightly-2022-11-22-012345
RHOS-16.1-RHEL-8-20220804.n.1

How reproducible:

Always

Steps to Reproduce:

Deploy cluster with additional Network on the workers

Actual results:

It is possible to select an egressIP network for a secondary interface

Expected results:

Only primary subnet can be chosen for egressIP

Additional info:

https://issues.redhat.com/browse/OCPQE-12968

Description of problem:

Insights operator gathers related clusteroperator's related objects from operators.openshift.io group. Ingresscontrollers are now missing, because it's a namespaceed resource and the "default" name is not provided in the related objects of the ingress clusteroperator

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

opm serve fails with message:

Error: compute digest: compute hash: write tar: stat .: os: DirFS with empty root

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

(The easiest reproducer involves serving an empty catalog)

1. mkdir /tmp/catalog

2. using Dockerfile /tmp/catalog.Dockerfile based on 4.12 docs (https://access.redhat.com/documentation/en-us/openshift_container_platform/4.12/html-single/operators/index#olm-creating-fb-catalog-image_olm-managing-custom-catalogs
# The base image is expected to contain
# /bin/opm (with a serve subcommand) and /bin/grpc_health_probe
FROM registry.redhat.io/openshift4/ose-operator-registry:v4.12

# Configure the entrypoint and command
ENTRYPOINT ["/bin/opm"]
CMD ["serve", "/configs"]

# Copy declarative config root into image at /configs
ADD catalog /configs

# Set DC-specific label for the location of the DC root directory
# in the image
LABEL operators.operatorframework.io.index.configs.v1=/configs

3. build the image `cd /tmp/ && docker build -f catalog.Dockerfile .`

4. execute an instance of the container in docker/podman `docker run --name cat-run [image-file]`

5. error

Using a dockerfile generated from opm (`opm generate dockerfile [dir]`) works, but includes precache and cachedir options to opm.

 

Actual results:

Error: compute digest: compute hash: write tar: stat .: os: DirFS with empty root

Expected results:

opm generates cache in default /tmp/cache location and serves without error

Additional info:

 

 

Description of problem:

There were 4 ingress-controllers and totally 15 routes. On web console, try to query "route_metrics_controller_routes_per_shard" in Observe >> Metrics page. the stats for 3 ingress-controllers are 15, and it is 1 for the last ingress-controller

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-23-154914

How reproducible:

Create pods, services, ingress-controllers, routes, then check  "route_metrics_controller_routes_per_shard" on web console

Steps to Reproduce:

1. get cluster's base domain
% oc get dnses.config/cluster -oyaml | grep -i domain
  baseDomain: shudi-412gcpop36.qe.gcp.devcluster.openshift.com

2. create 3 clusters
% oc -n openshift-ingress-operator get ingresscontroller
NAME         AGE
default      7h5m
extertest3   120m
internal1    120m
internal2    120m
% 

3. check the spec of the 4 ingress-controllres
a, default

b, extertest3
spec:
  domain: extertest3.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: External
    type: LoadBalancerService
c, internal1
spec:
  domain: internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: Internal
    type: LoadBalancerService
d, internal2
spec:
  domain: internal2.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: Internal
    type: LoadBalancerService
  routeSelector:
    matchLabels:
      shard: alpha

4. check the route, there are 15 routes
% oc get route -A | awk '{print $3}'
HOST/PORT
oauth-openshift.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
downloads-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
canary-openshift-ingress-canary.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
alertmanager-main-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-federate-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
thanos-querier-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
edge1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
int1reen2-test.internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
pass1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
reen1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
service-unsecure-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
int1edge2-test.internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
test.shudi.com
%

% oc get route -A | awk '{print $3}' | grep apps.shudi
oauth-openshift.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
downloads-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
canary-openshift-ingress-canary.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
alertmanager-main-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-federate-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
thanos-querier-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
edge1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
pass1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
reen1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
service-unsecure-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
%

% oc get route -A | awk '{print $3}' | grep apps.shudi | wc -l
      12
% oc get route -A | awk '{print $3}' | grep internal1 | wc -l 
       2
% oc get route -A | awk '{print $3}' | grep shudi.com | wc -l
       1
%

5. only route unsvc5 had the shard=alpha label
 % oc get route unsvc5  -oyaml | grep labels: -A2
  labels:
    name: unsvc5
    shard: alpha
 % oc get route unsvc5 -oyaml | grep spec: -A1
  spec:
    host: test.shudi.com

6. login web console(https://https://console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com/monitoring/query-browser), then navigate to Observe >> Metrics 

7. input"route_metrics_controller_routes_per_shard ", then click the "Run queries" button. As the attached picture showed:
​​name                           value
default                        15
extertest3                     15
internal1                      15      
internal2                      1

8. Also there was a minor issue: As the attached picture showed, there were two name in the header line

Name                                           name      value                              
route_metrics_controller_routes_per_shard     default    15
route_metrics_controller_routes_per_shard     extertest3 15
route_metrics_controller_routes_per_shard     internal1  15
route_metrics_controller_routes_per_shard     internal2  1

Actual results:

​​name                         value 
default                      15
extertest3                   15 
internal1                    15
internal2                    1

Expected results:

​​name                         value
default                      12
extertest3                   0
internal1                    2 
internal2                    1

Additional info:

 

This is a clone of issue OCPBUGS-6663. The following is the description of the original issue:

Description of problem:

When running openshift-install agent create image, and the install-config.yaml does not contain platform baremetal settings (except for VIPs) warnings are still generated as below:
DEBUG         Loading Install Config...            
WARNING Platform.Baremetal.ClusterProvisioningIP: 172.22.0.3 is ignored 
DEBUG Platform.Baremetal.BootstrapProvisioningIP: 172.22.0.2 is ignored 
WARNING Platform.Baremetal.ExternalBridge: baremetal is ignored 
WARNING Platform.Baremetal.ExternalMACAddress: 52:54:00:12:e1:68 is ignored 
WARNING Platform.Baremetal.ProvisioningBridge: provisioning is ignored 
WARNING Platform.Baremetal.ProvisioningMACAddress: 52:54:00:82:91:8d is ignored 
WARNING Platform.Baremetal.ProvisioningNetworkCIDR: 172.22.0.0/24 is ignored 
WARNING Platform.Baremetal.ProvisioningDHCPRange: 172.22.0.10,172.22.0.254 is ignored 
WARNING Capabilities: %!!(MISSING)s(*types.Capabilities=<nil>) is ignored 

It looks like these fields are populated with values from libvirt as shown in .openshift_install_state.json:
            "platform": {
                "baremetal": {
                    "libvirtURI": "qemu:///system",
                    "clusterProvisioningIP": "172.22.0.3",
                    "bootstrapProvisioningIP": "172.22.0.2",
                    "externalBridge": "baremetal",
                    "externalMACAddress": "52:54:00:12:e1:68",
                    "provisioningNetwork": "Managed",
                    "provisioningBridge": "provisioning",
                    "provisioningMACAddress": "52:54:00:82:91:8d",
                    "provisioningNetworkInterface": "",
                    "provisioningNetworkCIDR": "172.22.0.0/24",
                    "provisioningDHCPRange": "172.22.0.10,172.22.0.254",
                    "hosts": null,
                    "apiVIPs": [
                        "10.1.101.7",
                        "2620:52:0:165::7"
                    ],
                    "ingressVIPs": [
                        "10.1.101.9",
                        "2620:52:0:165::9"
                    ]

The install-config.yaml used to generate this has the following snippet:
platform:
  baremetal:
    apiVIPs:
    - 10.1.101.7
    - 2620:52:0:165::7
    ingressVIPs:
    - 10.1.101.9
    - 2620:52:0:165::9
additionalTrustBundle: |

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Happens every time

Steps to Reproduce:

1. Use install-config.yaml with no platform baremetal fields except for the VIPs
2. run openshift-install agent create image 

Actual results:

Warning messages are output

Expected results:

No warning messags

Additional info:

 

This is a clone of issue OCPBUGS-1704. The following is the description of the original issue:

Description of problem:

According to OCP 4.11 doc (https://docs.openshift.com/container-platform/4.11/installing/installing_gcp/installing-gcp-account.html#installation-gcp-enabling-api-services_installing-gcp-account), the Service Usage API (serviceusage.googleapis.com) is an optional API service to be enabled. But, the installation cannot succeed if this API is disabled.

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-25-071630

How reproducible:

Always, if the Service Usage API is disabled in the GCP project.

Steps to Reproduce:

1. Make sure the Service Usage API (serviceusage.googleapis.com) is disabled in the GCP project.
2. Try IPI installation in the GCP project. 

Actual results:

The installation would fail finally, without any worker machines launched.

Expected results:

Installation should succeed, or the OCP doc should be updated.

Additional info:

Please see the attached must-gather logs (http://virt-openshift-05.lab.eng.nay.redhat.com/jiwei/jiwei-0926-03-cnxn5/) and the sanity check results. 
FYI if enabling the API, and without changing anything else, the installation could succeed. 

Description of problem:

While running scale tests with ACM provisioning 1200+ SNOs via ZTP, converged flow was enabled. With converged flow the rate at which clusters begin install is much slower than what was witnessed without converged flow.

Example:
Without converged flow - 1250/1269 SNOs completed install in 3hrs and 11m
With converged flow - 487/1250 SNOs completed install in 10hours

The test actually hit timeouts so we don't exactly know how long it took, but you can see we only managed 487 SNOs to be provisioned in 10 hours.

The concurrency measurement scripts show that converged flow ran at a concurrency of 68 SNOs installing at a time vs non-converged flow peaking at 507.  Something within the converged flow is bottlenecking the SNOs install.

Version-Release number of selected component (if applicable):

Hub/SNO OCP 4.11.8
ACM 2.6.1-DOWNSTREAM-2022-09-08-02-53-38

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

converged flow to match previous provisioning speeds/rates

Additional info:

Must gather will be provided.

Description of problem:

When a pod runs to a completed state, we typically rely on the update event that will indicate to us that this pod is completed. At that point the pod IP is released and the port configuration is removed in OVN. The subsequent delete event for this pod will be ignored because it should have been cleaned up in the previous update.

However, there can be cases where the update event is missed with pod completed. In this case we will only receive a delete with pod completed event, and ignore tearing down the pod. The end result is the pod is not cleaned up in OVN and the IP address remains allocated, reducing the amount of address range available to launch another pod. This can lead to exhausting all IP addresses available for pod allocation on a node.

Version-Release number of selected component (if applicable):

4.10.24

How reproducible:

Not sure how to reproduce this. I'm guessing some lag in kapi updates can cause the completed update event and the final delete event to be combined into a single event.

Steps to Reproduce:

1.
2.
3.

Actual results:

Port still exists in OVN, IP remains allocated for a deleted pod.

Expected results:

IP should be freed, port should be removed from OVN.

Additional info:

 

This is a clone of issue OCPBUGS-5184. The following is the description of the original issue:

Description of problem:

Fail to deploy IPI azure cluster, where set region as westus3, vm type as NV8as_v4. Master node is running from azure portal, but could not ssh login. From serials log, get below error:

[ 3009.547219] amdgpu d1ef:00:00.0: amdgpu: failed to write reg:de0
[ 3011.982399] mlx5_core 6637:00:02.0 enP26167s1: TX timeout detected
[ 3011.987010] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 0, SQ: 0x170, CQ: 0x84d, SQ Cons: 0x823 SQ Prod: 0x840, usecs since last trans: 2418884000
[ 3011.996946] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 1, SQ: 0x175, CQ: 0x852, SQ Cons: 0x248c SQ Prod: 0x24a7, usecs since last trans: 2148366000
[ 3012.006980] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 2, SQ: 0x17a, CQ: 0x857, SQ Cons: 0x44a1 SQ Prod: 0x44c0, usecs since last trans: 2055000000
[ 3012.016936] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 3, SQ: 0x17f, CQ: 0x85c, SQ Cons: 0x405f SQ Prod: 0x4081, usecs since last trans: 1913890000
[ 3012.026954] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 4, SQ: 0x184, CQ: 0x861, SQ Cons: 0x39f2 SQ Prod: 0x3a11, usecs since last trans: 2020978000
[ 3012.037208] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 5, SQ: 0x189, CQ: 0x866, SQ Cons: 0x1784 SQ Prod: 0x17a6, usecs since last trans: 2185513000
[ 3012.047178] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 6, SQ: 0x18e, CQ: 0x86b, SQ Cons: 0x4c96 SQ Prod: 0x4cb3, usecs since last trans: 2124353000
[ 3012.056893] mlx5_core 6637:00:02.0 enP26167s1: TX timeout on queue: 7, SQ: 0x193, CQ: 0x870, SQ Cons: 0x3bec SQ Prod: 0x3c0f, usecs since last trans: 1855857000
[ 3021.535888] amdgpu d1ef:00:00.0: amdgpu: failed to write reg:e15
[ 3021.545955] BUG: unable to handle kernel paging request at ffffb57b90159000
[ 3021.550864] PGD 100145067 P4D 100145067 PUD 100146067 PMD 0 

From azure doc https://learn.microsoft.com/en-us/azure/virtual-machines/nvv4-series , looks like nvv4 series only supports Window VM.

 

Version-Release number of selected component (if applicable):

4.12 nightly build

How reproducible:

Always

Steps to Reproduce:

1. prepare install-config.yaml, set region as westus3, vm type as NV8as_v4 2. install cluster
3.

Actual results:

installation failed

Expected results:

If nvv4 series is not supported for Linux VM, installer might validate and show the message that such size is not supported.

Additional info:

 

 

 

 

 

This is a clone of issue OCPBUGS-4101. The following is the description of the original issue:

Description of problem:

We experienced two separate upgrade failures relating to the introduction of the SYSTEM_RESERVED_ES node sizing parameter, causing kubelet to stop running.

One cluster (clusterA) upgraded from 4.11.14 to 4.11.17. It experienced an issue whereby 
   /etc/node-sizing.env 
on its master nodes contained an empty SYSTEM_RESERVED_ES value:

---
cat /etc/node-sizing.env 
SYSTEM_RESERVED_MEMORY=5.36Gi
SYSTEM_RESERVED_CPU=0.11
SYSTEM_RESERVED_ES=
---

causing the kubelet to not start up. To restore service, this file was manually updated to set a value (1Gi), and kubelet was restarted.

We are uncertain what conditions led to this occuring on the clusterA master nodes as part of the upgrade.

A second cluster (clusterB) upgraded from 4.11.16 to 4.11.17. It experienced an issue whereby worker nodes were impacted by a similar problem, however this was because a custom node-sizing-enabled.env MachineConfig which did not set SYSTEM_RESERVED_ES

This caused existing worker nodes to go into a NotReady state after the ugprade, and additionally new nodes did not join the cluster as their kubelet would become impacted. 

For clusterB the conditions are more well-known of why the value is empty.

However, for both clusters, if SYSTEM_RESERVED_ES ends up as empty on a node it can cause the kubelet to not start. 

We have some asks as a result:
- Can MCO be made to recover from this situation if it occurs, perhaps  through application of a safe default if none exists, such that kubelet would start correctly?
- Can there possibly be alerting that could indicate and draw attention to the misconfiguration?

Version-Release number of selected component (if applicable):

4.11.17

How reproducible:

Have not been able to reproduce it on a fresh cluster upgrading from 4.11.16 to 4.11.17

Expected results:

If SYSTEM_RESERVED_ES is empty in /etc/node-sizing*env then a default should be applied and/or kubelet able to continue running.

Additional info:

 

This is a clone of issue OCPBUGS-2479. The following is the description of the original issue:

Description of problem:

Right border radius is 0 for the pipeline visualization wrapper in dark mode but looks fine in light mode

Version-Release number of selected component (if applicable):

4.12

How reproducible:

 

Steps to Reproduce:

1. Switch the theme to dark mode
2. Create a pipeline and navigate to the Pipeline details page

Actual results:

Right border radius is 0, see the screenshots

Expected results:

Right border radius should be same as left border radius.

Additional info:

 

This is a clone of issue OCPBUGS-4367. The following is the description of the original issue:

Description of problem:

The calls to log.Debugf() from image/baseiso.go and image/oc.go are not being output when the "image create" command is run.

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Every time

Steps to Reproduce:

1. Run ../bin/openshift-install agent create image --dir ./cluster-manifests/ --log-level debug

Actual results:

No debug log messages from log.Debugf() calls in pkg/asset/agent/image/oc.go

Expected results:

Debug log messages are output

Additional info:

Note from Zane: We should probably also use the real global logger instead of [creating a new one](https://github.com/openshift/installer/blob/2698cbb0ec7e96433a958ab6b864786c0c503c0b/pkg/asset/agent/image/baseiso.go#L109) with the default config that ignores the --log-level flag and prints weird `[0001]` stuff in the output for some reason. (The NMStateConfig manifests logging suffers from the same problem.)

 

 

 

Description of problem:

KafkSink current desctiption in odc is `Kafka Sink is Addressable, it receives events and send them to a Kafka topic.` and this should be `A KafkaSink takes a CloudEvent, and sends it to an Apache Kafka Topic.  Events can be specified in either Structured or Binary mode.` as provided by Serverless team

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Install Serverless operator
2. Create CR for knativeKafka in knative-eventing ns
3. go to dev perspective -> add -> event sink
4. Check the description of kafka sink

Actual results:

 

Expected results:

Update the description to as provided by serverless team

Additional info:

 

Description of the problem:

assisted-installer-controller Job does not apply Additional Root CA Trust Bundle

https://github.com/openshift/assisted-installer/issues/513

How reproducible:

https://github.com/openshift/assisted-installer/issues/513

Steps to reproduce:

1.  Create cluster with proxy and additional certificate bundle

2.Install

Actual results:

Controller failed to reach service cause of self signed certificate

Expected results:

Installation succeeds

This is a clone of issue OCPBUGS-1627. The following is the description of the original issue:

Description of problem:
Two issues when setting user-defined folder in failureDomain.
1. installer get error when setting folder as a path of user-defined folder in failureDomain.

failureDomains setting in install-config.yaml:

    failureDomains:
    - name: us-east-1
      region: us-east
      zone: us-east-1a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-1
        networks:
        - multi-zone-qe-dev-1
        datastore: multi-zone-ds-1
        folder: /IBMCloud/vm/qe-jima
    - name: us-east-2
      region: us-east
      zone: us-east-2a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-2
        networks:
        - multi-zone-qe-dev-1
        datastore: multi-zone-ds-2
        folder: /IBMCloud/vm/qe-jima
    - name: us-east-3
      region: us-east
      zone: us-east-3a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-3
        networks:
        - multi-zone-qe-dev-1
        datastore: workload_share_vcsmdcncworkload3_joYiR
        folder: /IBMCloud/vm/qe-jima
    - name: us-west-1
      region: us-west
      zone: us-west-1a
      server: ibmvcenter.vmc-ci.devcluster.openshift.com
      topology:
        datacenter: datacenter-2
        computeCluster: /datacenter-2/host/vcs-mdcnc-workload-4
        networks:
        - multi-zone-qe-dev-1
        datastore: workload_share_vcsmdcncworkload3_joYiR

Error message in terraform after completing ova image import:

DEBUG vsphereprivate_import_ova.import[0]: Still creating... [1m40s elapsed] 
DEBUG vsphereprivate_import_ova.import[3]: Creation complete after 1m40s [id=vm-367860] 
DEBUG vsphereprivate_import_ova.import[1]: Creation complete after 1m49s [id=vm-367863] 
DEBUG vsphereprivate_import_ova.import[0]: Still creating... [1m50s elapsed] 
DEBUG vsphereprivate_import_ova.import[2]: Still creating... [1m50s elapsed] 
DEBUG vsphereprivate_import_ova.import[2]: Still creating... [2m0s elapsed] 
DEBUG vsphereprivate_import_ova.import[0]: Still creating... [2m0s elapsed] 
DEBUG vsphereprivate_import_ova.import[2]: Creation complete after 2m2s [id=vm-367862] 
DEBUG vsphereprivate_import_ova.import[0]: Still creating... [2m10s elapsed] 
DEBUG vsphereprivate_import_ova.import[0]: Creation complete after 2m20s [id=vm-367861] 
DEBUG data.vsphere_virtual_machine.template[0]: Reading... 
DEBUG data.vsphere_virtual_machine.template[3]: Reading... 
DEBUG data.vsphere_virtual_machine.template[1]: Reading... 
DEBUG data.vsphere_virtual_machine.template[2]: Reading... 
DEBUG data.vsphere_virtual_machine.template[3]: Read complete after 1s [id=42054e33-85d6-e310-7f4f-4c52a73f8338] 
DEBUG data.vsphere_virtual_machine.template[1]: Read complete after 2s [id=42053e17-cc74-7c89-f5d1-059c9030ecc7] 
DEBUG data.vsphere_virtual_machine.template[2]: Read complete after 2s [id=4205019f-26d8-f9b4-ac0c-2c073fd70b35] 
DEBUG data.vsphere_virtual_machine.template[0]: Read complete after 2s [id=4205eaf2-c727-c647-ad44-bd9ad7023c56] 
ERROR                                              
ERROR Error: error trying to determine parent targetFolder: folder '/IBMCloud/vm//IBMCloud/vm' not found 
ERROR                                              
ERROR   with vsphere_folder.folder["IBMCloud-/IBMCloud/vm/qe-jima"], 
ERROR   on main.tf line 61, in resource "vsphere_folder" "folder": 
ERROR   61: resource "vsphere_folder" "folder" {   
ERROR                                              
ERROR failed to fetch Cluster: failed to generate asset "Cluster": failure applying terraform for "pre-bootstrap" stage: failed to create cluster: failed to apply Terraform: exit status 1 
ERROR                                              
ERROR Error: error trying to determine parent targetFolder: folder '/IBMCloud/vm//IBMCloud/vm' not found 
ERROR                                              
ERROR   with vsphere_folder.folder["IBMCloud-/IBMCloud/vm/qe-jima"], 
ERROR   on main.tf line 61, in resource "vsphere_folder" "folder": 
ERROR   61: resource "vsphere_folder" "folder" {   
ERROR                                              
ERROR   

2.  installer get panic error when setting folder as user-defined folder name in failure domains.

failure domain in install-config.yaml

    failureDomains:
    - name: us-east-1
      region: us-east
      zone: us-east-1a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-1
        networks:
        - multi-zone-qe-dev-1
        datastore: multi-zone-ds-1
        folder: qe-jima
    - name: us-east-2
      region: us-east
      zone: us-east-2a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-2
        networks:
        - multi-zone-qe-dev-1
        datastore: multi-zone-ds-2
        folder: qe-jima
    - name: us-east-3
      region: us-east
      zone: us-east-3a
      server: xxx
      topology:
        datacenter: IBMCloud
        computeCluster: /IBMCloud/host/vcs-mdcnc-workload-3
        networks:
        - multi-zone-qe-dev-1
        datastore: workload_share_vcsmdcncworkload3_joYiR
        folder: qe-jima
    - name: us-west-1
      region: us-west
      zone: us-west-1a
      server: xxx
      topology:
        datacenter: datacenter-2
        computeCluster: /datacenter-2/host/vcs-mdcnc-workload-4
        networks:
        - multi-zone-qe-dev-1
        datastore: workload_share_vcsmdcncworkload3_joYiR                                  

panic error message in installer:

INFO Obtaining RHCOS image file from 'https://rhcos.mirror.openshift.com/art/storage/releases/rhcos-4.12/412.86.202208101039-0/x86_64/rhcos-412.86.202208101039-0-vmware.x86_64.ova?sha256=' 
INFO The file was found in cache: /home/user/.cache/openshift-installer/image_cache/rhcos-412.86.202208101039-0-vmware.x86_64.ova. Reusing... 
panic: runtime error: index out of range [1] with length 1goroutine 1 [running]:
github.com/openshift/installer/pkg/tfvars/vsphere.TFVars({{0xc0013bd068, 0x3, 0x3}, {0xc000b11dd0, 0x12}, {0xc000b11db8, 0x14}, {0xc000b11d28, 0x14}, {0xc000fe8fc0, ...}, ...})
    /go/src/github.com/openshift/installer/pkg/tfvars/vsphere/vsphere.go:79 +0x61b
github.com/openshift/installer/pkg/asset/cluster.(*TerraformVariables).Generate(0x1d1ed360, 0x5?)
    /go/src/github.com/openshift/installer/pkg/asset/cluster/tfvars.go:847 +0x4798
 

Based on explanation of field folder, looks like folder name should be ok. If it is not allowed to use folder name, need to validate the folder and update explain.

 

sh-4.4$ ./openshift-install explain installconfig.platform.vsphere.failureDomains.topology.folder
KIND:     InstallConfig
VERSION:  v1RESOURCE: <string>
  folder is the name or inventory path of the folder in which the virtual machine is created/located.
 

 

 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-20-095559

How reproducible:

always

Steps to Reproduce:

see description

Actual results:

installation has errors when set user-defined folder

Expected results:

installation is successful when set user-defined folder

Additional info:

 

Description of problem:

Disconnected IPI OCP 4.10.22 cluster install on baremetal fails when hostname of master nodes does not include "master"    

Version-Release number of selected component (if applicable): 4.10.22

How reproducible:  Perform disconnected IPI install of OCP 4.10.22 on bare metal with master nodes that do not contain the text "master"

Steps to Reproduce:

Perform disconnected IPI install of OCP 4.10.22 on bare metal with master nodes that do not contain the text "master"

Actual results: master nodes do come up.

Expected results: master nodes should come up despite that the text "master" is not in their hostname.

Additional info:

Disconnected IPI OCP 4.10.22 cluster install on baremetal fails when hostname of master nodes does not include "master"    

The code for the cluster-baremetal-operator at the following link: 

https://github.com/openshift/cluster-baremetal-operator/blob/49d7b249c5dcef8228f206eff4530a25f03b201f/controllers/provisioning_controller.go#L441

The following condition is concerning:

if strings.Contains(bmh.Name, "master") && len(bmh.Spec.BootMACAddress) > 0

The packages reveal that bmh.Name references the name inside the metadata of the BMH object. 

Should a customer have masters with names that do not include the text "master", the above condition can never become true, and so, the following slice is never created :

macs = append(macs, bmh.Spec.BootMACAddress)

 

 

Description of problem:

The platform-operators-aggregated cluster operator wasn't created after enabling "TechPreviewNoUpgrade" featureGate, as follows,

MacBook-Pro:~ jianzhang$ oc patch featuregate cluster -p '{"spec": {"featureSet": "TechPreviewNoUpgrade"}}' --type=merge
featuregate.config.openshift.io/cluster patched

MacBook-Pro:~ jianzhang$ oc wait --for=condition=Available=True clusteroperators.config.openshift.io/platform-operators-aggregated
Error from server (NotFound): clusteroperators.config.openshift.io "platform-operators-aggregated" not found

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-20-095559

How reproducible:

always

Steps to Reproduce:

1. Install OCP 4.12 cluster.

2. Enable "TechPreviewNoUpgrade" feature gate.
MacBook-Pro:~ jianzhang$ oc patch featuregate cluster -p '{"spec": {"featureSet": "TechPreviewNoUpgrade"}}' --type=merge
featuregate.config.openshift.io/cluster patched 

3. Check platform-operators-aggregated cluster operator.
 

Actual results:

MacBook-Pro:~ jianzhang$ oc wait --for=condition=Available=True clusteroperators.config.openshift.io/platform-operators-aggregated
Error from server (NotFound): clusteroperators.config.openshift.io "platform-operators-aggregated" not found

Expected results:

The platform-operators-aggregated cluster operator can be created successfully.

Additional info:

The openshift-platform-operators pods running well.

MacBook-Pro:~ jianzhang$ oc get deploy -n openshift-platform-operators
NAME                                    READY   UP-TO-DATE   AVAILABLE   AGE
platform-operators-controller-manager   1/1     1            1           126m
platform-operators-rukpak-core          1/1     1            1           126m
platform-operators-rukpak-webhooks      2/2     2            2           126m
MacBook-Pro:~ jianzhang$ oc get co platform-operators-aggregated
Error from server (NotFound): clusteroperators.config.openshift.io "platform-operators-aggregated" not found

Description of problem:

As a downstream consumer of the installer (as a library), I want to be able to choose whether or not the image gallery is used when creating machinesets on Azure so that I can achieve backwards compatibility with pre-4.12

Version-Release number of selected component (if applicable):

4.12+

How reproducible:

always

Steps to Reproduce:

1. Try to generate machinesets in pre-4.12 environment
2. Lament as the installer automatically uses image gallery regardless

Actual results:

Installer attempts to guess whether to use image gallery

Expected results:

I should be able to choose myself

Additional info:

 

This is a clone of issue OCPBUGS-4350. The following is the description of the original issue:

Steps to reproduce:
Release: 4.13.0-0.nightly-2022-11-30-183109 (latest 4.12 nightly as well)
Create a HyperShift cluster on AWS, wait til its completed rolling out
Upgrade the HostedCluster by updating its release image to a newer one
Observe the 'network' clusteroperator resource in the guest cluster as well as the 'version' clusterversion resource in the guest cluster.
When the clusteroperator resource reports the upgraded release and the clusterversion resource reports the new release as applied, take a look at the ovnkube-master statefulset in the control plane namespace of the management cluster. It is still not finished rolling out.

Expected: that the network clusteroperator reports the new version only when all components have finished rolling out.

This is a clone of issue OCPBUGS-3458. The following is the description of the original issue:

Description of problem:

Since way back in 4.8, we've had a banner with To request update recommendations, configure a channel that supports your version when ClusterVersion has RetrievedUpdates=False . But that's only one of several reasons we could be RetrievedUpdates=False. Can we pivot to passing through the ClusterVersion condition message?

Version-Release number of selected component (if applicable):

4.8 and later.

How reproducible:

100%

Steps to Reproduce:

1. Launch a cluster-bot cluster like 4.11.12.
2. Set a channel with oc adm upgrade channel stable-4.11.
3. Scale down the CVO with oc scale --replicas 0 -n openshift-cluster-version deployments/cluster-version-operator.
4. Patch in a RetrievedUpdates condition with:

$ CONDITIONS="$(oc get -o json clusterversion version | jq -c '[.status.conditions[] | if .type == "RetrievedUpdates" then .status = "False" | .message = "Testing" else . end]')"
$ oc patch --subresource status clusterversion version --type json -p "[{\"op\": \"add\", \"path\": \"/status/conditions\", \"value\": ${CONDITIONS}}]"

5. View the admin console at /settings/cluster.

Actual results:

Advice about configuring the channel (but it's already configured).

Expected results:

See the message you patched into the RetrievedUpdates condition.

This is a clone of issue OCPBUGS-2260. The following is the description of the original issue:

TRT-594 investigates failed CI upgrade runs due to alert KubePodNotReady firing.  The case was a pod getting skipped over for scheduling over two successive master node update / restarts.  The case was determined valid so the ask is to be able to have the monitoring aware that master nodes are restarting and scheduling may be delayed.   Presuming we don't want to change the existing tolerance for the non master node restart cases could we suppress it during those restarts and fall back to a second alert with increased tolerances only during those restarts, if we have metrics indicating we are restarting.  Or similar if there are better ways to handle.

The scenario is:

  • A master node (1) is out of service during upgrade
  • A pod (A) is created but can not be scheduled due to anti-affinity rules as the other nodes already host a pod of that definition
  • A second pod (B) from the same definition is created after the first
  • Pod (A) attempts scheduling but fails as the master (1) node is still updating
  • Master (1) node completes updating
  • Pod (B) attempts scheduling and succeeds
  • Next Master (2) node begins updating
  • Pod (A) can not be scheduled on the next attempt(s) as the active master nodes already have pods placed and the next master (2) node is unavailable
  • Master (2) node completes updating
  • Pod (A) is scheduled

Description of problem:
project viewer is able to see a 'Create Pod Disruption Budget' button on Pods list page while the creation will fail finally due to less permission, in this way console should not show a 'Create Pod Disruption Budget' button for project viewer, other resources list page doesn’t have the issue

Version-Release number of selected component (if applicable):
4.10.0-0.nightly-2021-09-16-212009

How reproducible:
Always

Steps to Reproduce:
1. normal user has a project and workloads

  1. oc get all -n yapei1-project
    NAME READY STATUS RESTARTS AGE
    pod/example-787f749bb-czkms 1/1 Running 0 79s
    pod/example-787f749bb-m7wxt 1/1 Running 0 79s
    pod/example-787f749bb-mw8jv 1/1 Running 0 79s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/example 3/3 3 3 79s

NAME DESIRED CURRENT READY AGE
replicaset.apps/example-787f749bb 3 3 3 79s

2. grant another user with view access to user project 'yapei1-project'

  1. oc adm policy add-role-to-user view uiauto1 -n yapei1-project
    clusterrole.rbac.authorization.k8s.io/view added: "uiauto1"
    3. login with user 'uiauto1' and check the permissions on Pods list page

Actual results:
3. project viewer 'uiauto1' can see pods list successfully, at the same time console also shows a 'Create Pod Disruption Budget' button while the creation will finally fail if project viewer tries to create a pod

Expected results:
3. console should not show 'Create Pod Disruption Budget' button for a project viewer

Additional info:
For comparison: we doesn't show resource creation button('Create xxx' button) on other workloads list page for a project viewer, such as Deployments, DeploymentConfigs list etc

Description of problem:

$ oc adm must-gather -- gather_ingress_node_firewall
[must-gather      ] OUT Using must-gather plug-in image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:3dec5a08681e11eedcd31f075941b74f777b9187f0e711a498a212f9d96adb2f
When opening a support case, bugzilla, or issue please include the following summary data along with any other requested information:
ClusterID: 0ef60b50-4378-431d-8ca2-faa5af098274
ClusterVersion: Stable at "4.12.0-0.nightly-2022-09-26-111919"
ClusterOperators:
    clusteroperator/insights is not available (Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed
) because Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed[must-gather      ] OUT namespace/openshift-must-gather-fr7kc created
[must-gather      ] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-xx2fh created
[must-gather      ] OUT pod for plug-in image quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:3dec5a08681e11eedcd31f075941b74f777b9187f0e711a498a212f9d96adb2f created
[must-gather-xvfj4] POD 2022-09-28T16:57:00.887445531Z /bin/bash: /usr/bin/gather_ingress_node_firewall: Permission denied
[must-gather-xvfj4] OUT waiting for gather to complete
[must-gather-xvfj4] OUT downloading gather output
[must-gather-xvfj4] OUT receiving incremental file list
[must-gather-xvfj4] OUT ./
[must-gather-xvfj4] OUT 
[must-gather-xvfj4] OUT sent 27 bytes  received 40 bytes  26.80 bytes/sec
[must-gather-xvfj4] OUT total size is 0  speedup is 0.00
[must-gather      ] OUT namespace/openshift-must-gather-fr7kc deleted
[must-gather      ] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-xx2fh deleted
Reprinting Cluster State:
When opening a support case, bugzilla, or issue please include the following summary data along with any other requested information:
ClusterID: 0ef60b50-4378-431d-8ca2-faa5af098274
ClusterVersion: Stable at "4.12.0-0.nightly-2022-09-26-111919"
ClusterOperators:
    clusteroperator/insights is not available (Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed
) because Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

Agent based installation fails during the 3+1 deployment. I found that the machine-api-operator degraded due to minimum worker replica count is 2 and for 3+1 deployment we need to define one worker node.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Create agent.iso (openshift-install agent create image) using install-config.yaml and agent-config.yaml (PFA sample files)
2. Deploy a 3+1 cluster using agent.iso
3. Execute "openshift-install agent wait-for install-complete" command to wait for install complete. 

Actual results:

Getting below error:
ERROR Cluster operator kube-controller-manager Degraded is True with GarbageCollector_Error: GarbageCollectorDegraded: error fetching rules: Get "https://thanos-querier.openshift-monitoring.svc:9091/api/v1/rules": dial tcp: lookup thanos-querier.openshift-monitoring.svc on 172.30.0.10:53: no such host 
INFO Cluster operator machine-api Progressing is True with SyncingResources: Progressing towards operator: 4.12.0-0.nightly-2022-10-05-053337 
ERROR Cluster operator machine-api Degraded is True with SyncingFailed: Failed when progressing towards operator: 4.12.0-0.nightly-2022-10-05-053337 because minimum worker replica count (2) not yet met: current running replicas 1, waiting for [] 
INFO Cluster operator machine-api Available is False with Initializing: Operator is initializing 
INFO Cluster operator monitoring Available is False with UpdatingPrometheusOperatorFailed: Rollout of the monitoring stack failed and is degraded. Please investigate the degraded status error. 
ERROR Cluster operator monitoring Degraded is True with UpdatingPrometheusOperatorFailed: Failed to rollout the stack. Error: updating prometheus operator: reconciling Prometheus Operator Admission Webhook Deployment failed: updating Deployment object failed: waiting for DeploymentRollout of openshift-monitoring/prometheus-operator-admission-webhook: got 1 unavailable replicas 
INFO Cluster operator monitoring Progressing is True with RollOutInProgress: Rolling out the stack. 
INFO Cluster operator network ManagementStateDegraded is False with :  
ERROR Cluster initialization failed because one or more operators are not functioning properly. 
ERROR 				The cluster should be accessible for troubleshooting as detailed in the documentation linked below, 
ERROR 				https://docs.openshift.com/container-platform/latest/support/troubleshooting/troubleshooting-installations.html 

Expected results:

3+1 deployment should be successful.

Additional info:

I found that there is a condition in the machine-api-operator to check that the worker node count should be 2 which is preventing the 3+1 deployment.
https://github.com/openshift/machine-api-operator/blob/master/pkg/operator/sync.go#L322 

Description of problem:

Clusters created with platform 'vsphere' in the install-config end up as type 'BareMetal' in the infrastructure CR.

Version-Release number of selected component (if applicable):

4.12.3

How reproducible:

100%

Steps to Reproduce:

1. Create a cluster through the agent installer with platform: vsphere in the install-config
2. oc get infrastructure cluster -o jsonpath='{.status.platform}' 

Actual results:

BareMetal

Expected results:

VSphere

Additional info:

The platform type is not being case converted ("vsphere" -> "VSphere") when constructing the AgentClusterInstall CR. When read by the assisted-service client, the platform reads as unknown and therefore the platform field is left blank when the Cluster object is created in the assisted API. Presumably that results in the correct default platform for the topology: None for SNO, BareMetal for everything else, but never VSphere. Since the platform VIPs are passed through a non-platform-specific API in assisted, everything worked but the resulting cluster would have the BareMetal platform.

Description of problem:

Deploy IPI cluster on multi datacenter/cluster vsphere env, installer failed with some reason, then tried to destroy cluster, and found that one vm folder under one of datacenters is not deleted.

When installer exit, following objects are attached with tag jima15b-cq7z7
sh-4.4$ govc tags.attached.ls jima15b-cq7z7 | xargs govc ls -L
/IBMCloud/vm/jima15b-cq7z7
/datacenter-2/vm/jima15b-cq7z7
/datacenter-2/vm/jima15b-cq7z7/jima15b-cq7z7-rhcos-us-west-us-west-1a
/IBMCloud/vm/jima15b-cq7z7/jima15b-cq7z7-rhcos-us-east-us-east-2a
/IBMCloud/vm/jima15b-cq7z7/jima15b-cq7z7-rhcos-us-east-us-east-3a
/IBMCloud/vm/jima15b-cq7z7/jima15b-cq7z7-rhcos-us-east-us-east-1a
/IBMCloud/vm/jima15b-cq7z7/jima15b-cq7z7-bootstrap

sh-4.4$ ./openshift-install destroy cluster --dir ipi_missingzones/
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-rhcos-us-west-us-west-1a
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-rhcos-us-east-us-east-2a
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-rhcos-us-east-us-east-3a
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-rhcos-us-east-us-east-1a
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-bootstrap
INFO Destroyed                                     Folder=jima15b-cq7z7
INFO Deleted                                       Tag=jima15b-cq7z7
INFO Deleted                                       TagCategory=openshift-jima15b-cq7z7
INFO Time elapsed: 55s       

After destroying cluster, folder jima15b-cq7z7 is still there, not deleted.
sh-4.4$ govc ls /datacenter-2/vm/ | grep jima15b-cq7z7
/datacenter-2/vm/jima15b-cq7z7                    

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-18-141547

How reproducible:

always when installer fails to create infrastructure, it works when installation is successful. 

Steps to Reproduce:

1. deploy IPI cluster on vsphere env configured multi datacenter/cluster
2. installer failed to create infrastructure with some reason
3. destroy cluster
4. one folder is not deleted 

Actual results:

one folder is not deleted

Expected results:

All infrastructures created by installer should be removed

Additional info:

 

Description of problem:

Each LB created for a Service type LoadBalancer results in 1 client rule and <# of public subnets> health rules being created.  The rules per SG quota in AWS is quite small; 60 by default, and 200 hard max.  OCP has about 40 rules OOTB. Assuming an HA cluster in 3 AZs, that is 4 rules per LB.  With default AWS quota, only ~5 LBs can be create and with the hard max of 200, only ~40 LBs can be created.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1.  Create Service type LoadBalancer and observe increase in master-sg and worker-sg rules sets
2.
3.

Actual results:

4 rules are created

Expected results:

1 rules is created when the client rule is a superset of the per-subnet health rules

Additional info:

This ~4x the number of Services of type LoadBalancer.  This is required for Hypershift.

Description of problem:

  intra namespace allow network policy doesn't work after applying ingress&egress deny all network policy

Version-Release number of selected component (if applicable):

  OpenShift 4.10.12

How reproducible:

Always

Steps to Reproduce:
  1. Define deny all network policy for egress an ingress in a namespace:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-all
spec:
  podSelector: {}
  policyTypes:
  - Ingress
  - Egress

2. Define the following network policy to allow the traffic between the pods in the namespace:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-intra-namespace-001
spec:
  egress:
  - to:
    - podSelector: {}
  ingress:
  - from:
    - podSelector: {}
  podSelector: {}
  policyTypes:
  - Ingress
  - Egress 

3. Test the connectivity between two pods from the namespace.

Actual results:

   The connectivity is not allowed

Expected results:

  The connectivity should be allowed between pods from the same namespace.

Additional info:

  After performing a test and analyzing SDN flows for the namespace: 

sh-4.4# ovs-ofctl dump-flows -O OpenFlow13 br0 | grep --color 0x964376 
 cookie=0x0, duration=99375.342s, table=20, n_packets=14, n_bytes=588, priority=100,arp,in_port=21,arp_spa=10.128.2.20,arp_sha=00:00:0a:80:02:14/00:00:ff:ff:ff:ff actions=load:0x964376->NXM_NX_REG0[],goto_table:30
 cookie=0x0, duration=1681.845s, table=20, n_packets=11, n_bytes=462, priority=100,arp,in_port=24,arp_spa=10.128.2.23,arp_sha=00:00:0a:80:02:17/00:00:ff:ff:ff:ff actions=load:0x964376->NXM_NX_REG0[],goto_table:30
 cookie=0x0, duration=99375.342s, table=20, n_packets=135610, n_bytes=759239814, priority=100,ip,in_port=21,nw_src=10.128.2.20 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=1681.845s, table=20, n_packets=2006, n_bytes=12684967, priority=100,ip,in_port=24,nw_src=10.128.2.23 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=99375.342s, table=25, n_packets=0, n_bytes=0, priority=100,ip,nw_src=10.128.2.20 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=1681.845s, table=25, n_packets=0, n_bytes=0, priority=100,ip,nw_src=10.128.2.23 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=975.129s, table=27, n_packets=0, n_bytes=0, priority=150,reg0=0x964376,reg1=0x964376 actions=goto_table:30
 cookie=0x0, duration=99375.342s, table=70, n_packets=145260, n_bytes=11722173, priority=100,ip,nw_dst=10.128.2.20 actions=load:0x964376->NXM_NX_REG1[],load:0x15->NXM_NX_REG2[],goto_table:80
 cookie=0x0, duration=1681.845s, table=70, n_packets=2336, n_bytes=191079, priority=100,ip,nw_dst=10.128.2.23 actions=load:0x964376->NXM_NX_REG1[],load:0x18->NXM_NX_REG2[],goto_table:80
 cookie=0x0, duration=975.129s, table=80, n_packets=0, n_bytes=0, priority=150,reg0=0x964376,reg1=0x964376 actions=output:NXM_NX_REG2[]

We see that the following rule doesn't match because `reg1` hasn't been defined:

 cookie=0x0, duration=975.129s, table=27, n_packets=0, n_bytes=0, priority=150,reg0=0x964376,reg1=0x964376 actions=goto_table:30 

 

This is a clone of issue OCPBUGS-4168. The following is the description of the original issue:

Description of problem:

Prometheus continuously restarts due to slow WAL replay

Version-Release number of selected component (if applicable):

openshift - 4.11.13

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

4.2 AWS boot images such as ami-01e7fdcb66157b224 include the old ignition.platform.id=ec2 kernel command line parameter. When launched against 4.12.0-rc.3, new machines fail with:

  1. The old user-data and old AMI successfully get to the machine-config-server request stage.
  2. The new instance will then request the full Ignition from /config/worker , and the machine-config server translates that to the old Ignition v2 spec format.
  3. The instance will lay down that Ignition-formatted content, and then try and reboot into the new state.
  4. Coming back up in the new state, the modern Afterburn comes up to try and figure out a node name for the kubelet, and this fails with unknown provider 'ec2'.

Version-Release number of selected component (if applicable):

coreos-assemblers used ignition.platform.id=ec2, but pivoted to =aws here. It's not clear when that made its way into new AWS boot images. Some time after 4.2 and before 4.6.

Afterburn dropped support for legacy command-line options like the ec2 slug in 5.0.0. But it's not clear when that shipped into RHCOS. The release controller points at this RHCOS diff, but that has afterburn-0-5.3.0-1 builds on both sides.

How reproducible:

100%, given a sufficiently old AMI and a sufficiently new OpenShift release target.

Steps to Reproduce:

  1. Install 4.12.0-rc.3 or similar new OpenShift on AWS in us-east-1.
  2. Create Ignition v2 user-data in a Secret in openshift-machine-api. I'm fuzzy on how to do that portion easily, since it's basically RFE-3001 backwards.
  3. Edit a compute MachineSet to set spec.template.spec.providerSpec.value.ami to id: ami-01e7fdcb66157b224 and also point it at your v2 user-data Secret.
  4. Possibly delete an existing Machine in that MachineSet, or raise replicas, or otherwise talk the MachineSet controller into provisioning a new Machine to pick up the reconfigured AMI.

Actual results:

The new Machine will get to Provisioned but fail to progress to Running. systemd journal logs will include unknown provider 'ec2' for Afterburn units.

Expected results:

Old boot-image AMIs can successfully update to 4.12.

Alternatively, we pin down the set of exposed boot images sufficiently that users with older clusters can audit for exposure and avoid the issue by updating to more modern boot images (although updating boot images is not trivial, see RFE-3001 and the Ignition spec 2 to 3 transition discussed in kcs#5514051.

This is a clone of issue OCPBUGS-5346. The following is the description of the original issue:

Description of problem:

The vSphere status health item is misleading.

More info: https://coreos.slack.com/archives/CUPJTHQ5P/p1672829660214369

 

Version-Release number of selected component (if applicable):

4.12

How reproducible:

 

Steps to Reproduce:

1. Have OCP 4.12 on vSphere
2. On the Cluster Dashboard (landing page), check the vSphere Status Health (static plugin)
3.

Actual results:

The icon shows pregress but nothing is progressing when the modal dialog is open

Expected results:

No misleading message and icon are rendered.

Additional info:

Since the Problem detector is not a reliable source and modification of the HealthItem in the OCP Console is too complex task for the recent state of release, a non-misleading text is good-enough.

Description of problem:

ClusterOperator status get's updated when the conditions are re-ordered. There doesn't seem to be any change to the conditions except the reorder.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

kubectl get clusteroperator monitoring -oyaml --watch

Actual results:

status:   
  conditions: 
  - lastTransitionTime: "2022-08-25T23:39:59Z"
    message: Successfully rolled out the stack.
    reason: RollOutDone
    status: "True"
    type: Available
  - lastTransitionTime: "2022-08-25T23:39:59Z"
    status: "False"
    type: Progressing
  - lastTransitionTime: "2022-08-25T23:39:59Z"
    message: 'Prometheus is running without persistent storage which can lead to data
      loss during upgrades and cluster disruptions. Please refer to the official documentation
      to see how to configure storage for Prometheus: https://docs.openshift.com/container-platform/4.8/monitoring/configuring-the-monitoring-stack.html'
    reason: PrometheusDataPersistenceNotConfigured
    status: "False"
    type: Degraded
  - lastTransitionTime: "2022-08-25T23:39:59Z"
    status: "True"
    type: Upgradeable

Expected results:

I would have expected no update, since nothing changed.

status:   
  conditions:   
  - lastTransitionTime: "2022-08-25T23:39:59Z"
    status: "True"
    type: Upgradeable
  - lastTransitionTime: "2022-08-25T23:39:59Z"
    message: Successfully rolled out the stack.
    reason: RollOutDone
    status: "True"
    type: Available
  - lastTransitionTime: "2022-08-25T23:39:59Z"
    status: "False"
    type: Progressing
  - lastTransitionTime: "2022-08-25T23:39:59Z"
    message: 'Prometheus is running without persistent storage which can lead to data
      loss during upgrades and cluster disruptions. Please refer to the official documentation
      to see how to configure storage for Prometheus: https://docs.openshift.com/container-platform/4.8/monitoring/configuring-the-monitoring-stack.html'
    reason: PrometheusDataPersistenceNotConfigured
    status: "False"
    type: Degraded
 

Additional info:

 

Name: Routing
Description: Please change the "Routing" component to be a subcomponent "router" of the "Networking" component.

Component: change to "Networking".
Subcomponent: change to "router".

Existing fields (default assignee, default QA contact, default CC email list, etc.) should remain the same as they currently are.
Default Assignee: aos-network-edge-staff@bot.bugzilla.redhat.com
Default QA Contact: hongli@redhat.com
Default CC List: aos-network-edge-staff@bot.bugzilla.redhat.com
Additional Notes:
I filled in "Default CC email list" because the form validation would not permit me to omit it. However, it can be left empty in Bugzilla (it is currently empty).

If possible, we would like this change to be done prior to the Bugzilla-to-Jira migration to avoid the need to make the change after the migration.

Tracker bug for bootimage bump in 4.12. This bug should block bugs which need a bootimage bump to fix.

The previous tracker is OCPBUGS-561.

This is a clone of issue OCPBUGS-3027. The following is the description of the original issue:

Description of problem:

When running the console in development mode per https://github.com/openshift/console#frontend-development, metrics do not load on the cluster overview, pods list page, pod details page (Metrics tab is missing), etc.

Samuel Padgett suspects the changes in https://github.com/openshift/console/commit/0bd839da219462ea585183de1c856fb60e9f96fb are related.

Probably for: 1h or some such; I don't think it needs to go off immediately. But in-cluster admins and folks monitoring submitted Insights should have a way to figure out that the cluster is trying and failing to submit Telemetry. The alert should not fire when Telemetry submission has been explicitly disabled.

There is an existing alert for PrometheusRemoteWriteBehind in a similar space, but as of today, the Temeletry submissions are happening via telemeter-client, due to concerns about the load of submitting via remote-write.